Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transl Res ; 15(5): 3026-3039, 2023.
Article in English | MEDLINE | ID: mdl-37303663

ABSTRACT

OBJECTIVES: Ischemia-reperfusion injury is a complicated pathologic process that involves multiple factors including oxidative stress, endoplasmic reticulum stress, calcium overload, inflammatory response, disturbances in energy metabolism, apoptosis, and some newly-described forms of programmed cell death (e.g., necroptosis, autophagy, pyroptosis, patanatos, and ferroptosis). Chinese herbal monomers (CHMs) have long been applied to treat ischemia-reperfusion injury based on a solid research foundation. This paper objectively reviews in vitro and in vivo studies on the use of CHMs to protect against ischemia-reperfusion injury. METHODS: We reviewed 31 CHMs that have been shown to be effective for treating ischemia-reperfusion injury models of the heart, brain, and kidney. According to the mechanism of action, these CHMs were divided into three categories: protecting damaged histocytes, inhibiting inflammatory cells, and promoting the proliferation of damaged histocytes. Some CHMs were found to have more than one mechanism at the same time. RESULTS: Of the 31 CHMs, 28 protect damaged histocytes, 13 inhibit inflammatory cells, and three promote the proliferation of damaged histocytes. CONCLUSIONS: CHMs show promise for treating ischemia-reperfusion injury. The eexisting treatment experiences for ischemia-reperfusion injury can be used as a reference.

2.
Biotechnol Biofuels ; 9: 203, 2016.
Article in English | MEDLINE | ID: mdl-27688806

ABSTRACT

BACKGROUND: The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and secretomic profiling of P. oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106 were employed to screen for novel regulators of cellulase and xylanase gene expression. RESULTS: The 30.62 Mb P. oxalicum HP7-1 genome was sequenced, and 9834 protein-coding genes were annotated. Re-sequencing of the mutant EU2106 genome identified 274 single nucleotide variations and 12 insertion/deletions. Comparative genomic, transcriptomic and secretomic profiling of HP7-1 and EU2106 revealed four candidate regulators of cellulase and xylanase gene expression. Deletion of these candidate genes and measurement of the enzymatic activity of the resultant mutants confirmed the identity of three regulatory genes. POX02484 and POX08522, encoding a putative Zn(II)2Cys6 DNA-binding domain and forkhead protein, respectively, were found to be novel, while PoxClrB is an ortholog of ClrB, a key transcriptional regulator of cellulolytic enzyme gene expression in filamentous fungi. ΔPOX02484 and ΔPOX08522 mutants exhibited significantly reduced ß-glucosidase activity, increased carboxymethylcellulose cellulase and xylanase activities, and altered transcription level of cellulase and xylanase genes compared with the parent strain ΔPoxKu70, with Avicel as the sole carbon source. CONCLUSIONS: Two novel genes, POX02484 and POX08522, were found and characterized to regulate the expression of cellulase and xylanase genes in P. oxalicum. These findings are important for engineering filamentous fungi to improve cellulase and xylanase production.

SELECTION OF CITATIONS
SEARCH DETAIL
...