Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12823, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550374

ABSTRACT

Drought stress can severely affect sugarcane growth and yield. The objective of this research was to identify candidate genes in sugarcane tillering seedlings in response to drought stress. We performed a comparative phenotypic, physiological and transcriptomic analysis of tiller seedlings of drought-stressed and well-watered "Guire 2" sugarcane, in a time-course experiment (5 days, 9 days and 15 days). Physiological examination reviewed that SOD, proline, soluble sugars, and soluble proteins accumulated in large amounts in tiller seedlings under different intensities of drought stress, while MDA levels remained at a stable level, indicating that the accumulation of osmoregulatory substances and the enhancement of antioxidant enzyme activities helped to limit further damage caused by drought stress. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify genes and modules associated with sugarcane tillering seedlings in response to drought stress. Drought stress induced huge down-regulated in gene expression profiles, most of down-regulated genes were mainly associated with photosynthesis, sugar metabolism and fatty acid synthesis. We obtained four gene co-expression modules significantly associated with the physiological changes under drought stress (three modules positively correlated, one module negatively correlated), and found that LSG1-2, ERF1-2, SHKA, TIL, HSP18.1, HSP24.1, HSP16.1 and HSFA6A may play essential regulatory roles as hub genes in increasing SOD, Pro, soluble sugar or soluble protein contents. In addition, one module was found mostly involved in tiller stem diameter, among which members of the BHLH148 were important nodes. These results provide new insights into the mechanisms by which sugarcane tillering seedlings respond to drought stress.


Subject(s)
Saccharum , Transcriptome , Seedlings/genetics , Saccharum/genetics , Droughts , Superoxide Dismutase/genetics , Stress, Physiological/genetics
2.
Curr Microbiol ; 77(8): 1864-1870, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32242244

ABSTRACT

Stain NN08200 was isolated from the surface-sterilized stem of sugarcane grown in Guangxi province of China. The stain was Gram-negative, facultative anaerobic, non-spore-forming bacteria. The complete genome SNP-based phylogenetic analysis indicate that NN08200 is a member of the genus Pantoea ananatis. Here, we summarize the features of strain NN08200 and describe its complete genome. The genome contains a chromosome and two plasmids, in total 5,176,640 nucleotides with 54.76% GC content. The chromosome genome contains 4598 protein-coding genes, and 135 ncRNA genes, including 22 rRNA genes, 78 tRNA genes and 35 sRNA genes, the plasmid 1 contains 149 protein-coding genes and the plasmid 2 contains 308 protein-coding genes. We identified 130 tandem repeats, 101 transposon genes, and 16 predicted genomic islands on the chromosome. We found an indole pyruvate decarboxylase encoding gene which involved in the biosynthesis of the plant hormone indole-3-acetic acid, it may explain the reason why NN08200 stain have growth-promoting effects on sugarcane. Considering the pathogenic potential and its versatility of the species of the genus Pantoea, the genome information of the strain NN08200 give us a chance to determine the genetic background of interactions between endophytic enterobacteria and plants.


Subject(s)
Endophytes/genetics , Genome, Bacterial , Pantoea/genetics , Saccharum/microbiology , Base Composition , China , Endophytes/isolation & purification , Genomic Islands , Pantoea/isolation & purification , Phylogeny , Plasmids/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL