Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 31(12): 1567-78, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26590030

ABSTRACT

OBJECTIVES: A commercial restorative material, BondfillSB (BF), is a modification of 4-META/MMA-TBB resin cement. BF uses a self-etching primer and added pre-polymerized organic fillers. We compared BF with another self-etching system, EasyBond (EB), in shear bond strength, bonded interface characteristics to human dentin and contraction gap when used in bulk-filling. METHODS: Shear bond strength of BF and EB + Z100 (Z), bonded by different experience-level operators, was evaluated. Bonded interfaces were characterized by SEM, AFM, and AFM based nano-indentation. Contraction gaps (CG) at 0h and 24h after polymerization were evaluated for BF or EB bulk filled class I cavities. To meet the clinical recommendation, BF's powder was replaced by experimental radioopaque powder (BFO) for the CG study. EB was used with Z (EBZ) or with a resin marketed for bulk-fill base (SureFil-SDR-flow (EBSF)). RESULTS: Shear bond strengths (Mean ± Standard Deviation (S.D.)) of BF (37.4 ± 2.6 MPa; n=36) were higher and less variable than EBZ (18.2 ± 7.6 MPa; n=36) (p<0.0001, One-way ANOVA). Weibull characteristic strength (η) differed significantly between materials (p<0.0001) but not between operators (p=0.90). EBZ often had non-uniform interfaces and a wider band of reduced elastic modulus (E) of greater than 20 µm across the interface. BF had uniform interfaces and a smaller width of affected dentin under the interface (∼1 µm). There was a difference in dentin-E between EBZ and BF up to 9 µm from the interface (mixed-effects model; P=0.03). A stratified linear regression model used for CG. EBSF and BFO showed significantly smaller CG than EBZ at time 0. None of three combinations showed any significant change between 0h-CG and 24h-CG. SIGNIFICANCE: BF possessed bonding characteristics required to serve as a restorative.


Subject(s)
Boron Compounds/chemistry , Dental Restoration, Permanent/methods , Dentin-Bonding Agents/chemistry , Methacrylates/chemistry , Methylmethacrylates/chemistry , Resin Cements/chemistry , Composite Resins , Dental Stress Analysis , In Vitro Techniques , Microscopy, Electron, Scanning , Molar , Self-Curing of Dental Resins , Shear Strength
2.
Biomaterials ; 25(19): 4847-57, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15120532

ABSTRACT

The mechanical properties of a tissue can be evaluated by determining the response of the structure to mechanical loading. This can be accomplished only when the tissue has been prepared with minimum to no artifacts, thus preserving its structure. In this study it was hypothesized that the structure of cementum is inhomogeneous, contributing to a significant variation in mechanical properties of cementum. Therefore, the goals of the study were to identify potential artifacts generated by conventional sample preparation techniques such as polishing and ultrasectioning and subsequently characterize the prepared specimens using an atomic force microscope (AFM) and an AFM-nanoindenter. Comparisons between cryofractured, ultrasectioned and polished specimens concluded that ultrasectioned surfaces have significantly lower average surface roughness 'R(a)' (p<0.05). Microstructure of ultrasectioned specimens characterized using an AFM illustrated Sharpey's fibers (SF) and intrinsic fibers (IF) running perpendicular and parallel to the root surface similar to the observed microstructure of cryofractured cementum. In addition, a 10-50 microm wide cementum dentin junction (CDJ) was distinctly observed in the ultrasectioned specimens but not in polished specimens. The SF and CDJ illustrated relatively higher levels of hydrophilicity under wet conditions. The observed inhomogeneous microstructure of the ultrasectioned specimens led to a broader range of nanomechanical properties (modulus: 14.2-25.9 GPa; hardness: 0.48-1.09 GPa). However, masking of the same regions such as SF and CDJ due to smeared cementum in polished specimens resulted in a narrower range of nanomechanical properties (modulus: 18.2-20.8 GPa; hardness: 0.79-0.89 GPa). This effect is most noticeable under wet conditions for ultrasectioned specimens (modulus 2.6-10.9 GPa; hardness 0.05-0.30 GPa) compared to the polished specimens (modulus 12.2-14.5 GPa; hardness 0.33-0.45 GPa). Cementum also was shown to be highly viscoelastic, especially when hydrated. The results suggest ultrasectioning of cementum was superior to polishing preparation technique since it allowed visualization of cementum structures similar to cryofractured specimens while providing a flat surface necessary for AFM-based nanoindentation techniques. Additionally, the structural inhomogeneity observed within ultrasectioned cementum contributed to a broader range of mechanical properties.


Subject(s)
Cryopreservation/methods , Dental Cementum/physiology , Dental Cementum/ultrastructure , Microtomy/methods , Nanotechnology/methods , Specimen Handling/methods , Aged , Aged, 80 and over , Biomechanical Phenomena/methods , Dental Cementum/chemistry , Elasticity , Hardness , Humans , Male , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...