Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268706

ABSTRACT

There is significant interest in understanding whether nanomaterials with outstanding mechanical or electrical properties also possess antibacterial properties. However, assessment of antibacterial activity is a complex problem at the interface of chemistry and microbiology. Results can be affected by many factors including nanomaterial size, surface chemistry, concentration, and the dispersion media. The difficulty of dispersing nanomaterials such as single-walled carbon nanotubes (SWNTs) has resulted in many studies being conducted in the presence of dispersion aides which may themselves contribute to bacterial stress. The recent discovery that a standard microbial growth media, tryptic soy broth (TSB), is an effective SWNT dispersant provides a new opportunity to investigate the potential antibacterial activity of SWNTs using dispersants that range from antibacterial to growth-supporting. The five dispersants chosen for this work were Sodium dodecyl sulfate (SDS), pluronic, lysozyme, DNA, and tryptic soy broth. Staphylococcus aureus and Salmonella enterica were used as the model Gram-positive and Gram-negative bacteria. Activity was measured in terms of colony forming unit (CFU) and optical density measurements. None of the systems exhibited activity against Salmonella. SDS was fatal to Staph. aureus regardless of the presence of SWNTs. The activity of pluronic and lysozyme against Staph. aureus was enhanced by the presence of SWNTs. In contrast, the DNA and TSB dispersions did not have any activity regardless of the presence of SWNTs. These results highlight that the purported antibacterial activity of SWNTs may only be effective against bacteria that are sensitized by the dispersant and suggests the need for additional research on the mechanisms by which SWNT-dispersant interactions can result in antibacterial activity.


Subject(s)
Nanotubes, Carbon , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanotubes, Carbon/chemistry , Sodium Dodecyl Sulfate/chemistry
2.
Langmuir ; 36(18): 4975-4984, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32308003

ABSTRACT

A Landau-de Gennes formulation coupled with a mass-transfer equation was used to track the evaporation front and the development of chiral microstructures during the casting of sulfuric acid-hydrolyzed cellulose nanocrystal (CNC) films. These simulations are compared to thin-film casting experiments that used analogous processing parameters and environments. The results show that the initial concentration, chiral strength, surface anchoring, speed of drying, and the influence of initial shear alignment all affect the uniformity of the microstructure and the orientation of the chiral director. In this report, we aim to show that under optimal casting conditions, the lateral size of planar microstructural domains that exhibit uniform selective reflection can be achieved on the order of millimeters.

3.
ACS Omega ; 5(5): 2254-2259, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064386

ABSTRACT

Carbon nanotube-lysozyme (LSZ) conjugates provide an attractive combination of high strength and antimicrobial activity. However, there has not been a direct comparison of the covalent and noncovalent methods for creating them. In this work, single-walled carbon nanotubes (SWNT) were functionalized with LSZ using both noncovalent adsorption and covalent attachment via N-ethyl-N-(3-dimethylamino-propyl) carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. The amount of attached lysozyme, dispersion stability, and antimicrobial activity was compared. In addition, the mechanical properties of LSZ-SWNT in poly(vinyl alcohol) (PVA) composite films were investigated. Dispersions of covalently bound LSZ-SWNT had better dispersion stability. This was attributed to covalent functionalization enabling sustained SWNT dispersion at a lower LSZ/SWNT ratio. The covalently bound LSZ-SWNT also exhibited a lower initial rate of antibacterial response but were active over a longer time scale. Composite films made from LSZ-SWNT maintained similar activity as the corresponding dispersions. However, the noncovalent LSZ-SWNT films were stronger and more hydrolytically stable than those made from covalent LSZ-SWNT.

4.
Langmuir ; 34(44): 13274-13282, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30301352

ABSTRACT

A Landau-de Gennes formulation was implemented in dynamic finite element simulations to compare with postshear relaxation experiments that were conducted on cholesteric cellulose nanocrystal (CNC) dispersions. Our study focused on the microstructural reassembly of CNCs in lyotropic dispersions as parameters such as chiral strength and gap confinement were varied. Our simulation results show that homeotropic and/or more complicated three-dimensional helical configurations are possible, depending on the choice of these parameters. We also observed how dynamic banding patterns develop into the hierarchical microstructures that are characterized by an equilibrium pitch length in both the experiments and simulations. This work has immediate relevance for cellulose nanocrystal dispersion processing and provides new insight into fluid phase ordering for tailorable optical properties.

5.
Soft Matter ; 13(45): 8451-8462, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29087424

ABSTRACT

Cellulose nanocrystals (CNC) have been studied as nanostructured building blocks for functional materials and function as a model nanomaterial mesogen for cholesteric (chiral nematic) liquid crystalline phases. In this study, both rheology and small angle neutron scattering (RheoSANS) were used to measure changes in flow-oriented order parameter and viscosity as a function of shear rate for isotropic, biphasic, liquid crystalline, and gel dispersions of CNC in deuterium oxide (D2O). In contrast to plots of viscosity versus shear rate, the order parameter trends showed three distinct rheological regions over a range of concentrations. This finding is significant because the existence of three rheological regions as a function of shear rate is a long-standing signature of liquid crystalline phases composed of rod-like polymers, but observing this trend has been elusive for high-concentration dispersions of anisotropic nanomaterials. The results of this work are valuable for guiding the development of processing methodologies for producing ordered materials from CNC dispersions and the broader class of chiral nanomaterial mesogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...