Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 7813, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385385

ABSTRACT

The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.


Subject(s)
Lignin/metabolism , Streptomyces/enzymology , Alcohol Oxidoreductases/genetics , Biodegradation, Environmental , Biomass , Ethanol/metabolism , Laccase/genetics , Lignin/chemistry , Lignin/genetics , Peroxidase/genetics , Peroxidases/genetics , Polymerization , Streptomyces/genetics
2.
Article in English | MEDLINE | ID: mdl-15332674

ABSTRACT

An evaluation of two commonly used coagulants, alum and ferric chloride was conducted to treat retention pond water using microfiltration. To determine the effectiveness of these coagulants in removing turbidity, color, and total suspended solids two different sets of the experiments were performed. Preliminary test was carried out to evaluate the optimum dosages of coagulants. Optimum turbidity removal was achieved with a 4 and 20 mg/L dosage for ferric chloride and alum, respectively. Generally, coupling microfiltration with coagulation using both alum and ferric chloride exhibited excellent effectiveness for turbidity, color, and total suspended solids removal. The efficiency for alum and ferric chloride for turbidity removal were 96 and 98%, respectively, which was greater than 89% removal using microfiltration alone. Furthermore, microfiltration only demonstrated 81 and 83% removal efficiency for color and total suspended solids removal, respectively. However, microfiltration-coagulation using alum and ferric chloride resulted about 83 and 93% color removal, and 92 and 94% total suspended solids removal, respectively.


Subject(s)
Water Pollutants/isolation & purification , Water Purification/methods , Alum Compounds/chemistry , Chlorides , Ferric Compounds/chemistry , Filtration , Rain , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...