Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38625473

ABSTRACT

Molten salts are the operational fluid for most concentrated solar power (CSP) systems, which has attracted more attention among the scientific community due to the augmentation of their properties with the doping of nanoparticles. Hexagonal boron nitride (h-BN) nanoparticles were dispersed in HITEC molten salt to create a novel nanofluid and evaluate the h-BN nanoparticles' influence on HITEC thermophysical properties. The influence of nanoparticle concentration (0.1, 0.5, and 1wt.%) of h-BN and HITEC was studied in this research. HITEC and nano-enhanced HITEC molten salt (NEHMS) were characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR). Specific heat capacity, latent heat, and melting temperature were assessed using differential scanning calorimetry (DSC). The maximum working temperature was evaluated with thermogravimetric analysis (TGA). The ideal nanoparticle concentration is 0.1 wt.% h-BN, which results in a 27% increase in heat capacity, a 72% increase in latent heat, and a 7% enhancement in thermal stability. The thermal cycling stability test proved the stability of the enhanced thermophysical properties. The material characterization revealed that the samples with improved thermophysical properties have a homogeneous dispersion of nanoparticles with minor nanoparticle agglomeration. The system advisor model (SAM) simulation comparison of the optimum sample with solar salt and HITEC salt revealed that using the optimum sample increases CSP plant efficiency by 0.4% and reduces power costs by 0.13¢/kWh.

2.
Micromachines (Basel) ; 13(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144136

ABSTRACT

Face recognition is one of the most sophisticated disciplines of biometric systems. The use of VCSEL in automotive applications is one of the most recent advances. The existing VCSEL package with a diffuser on top of a lens intended for automotive applications could not satisfy the criteria of the automotive TS16949: 2009 specification because the package was harmed and developed a lens fracture during 100 thermal cycle tests. In order to complete a cycle, the temperature rises from -40 °C to 150 °C and then rises again from 150 °C to 260 °C. The package then needs to be tested 500 times to ensure it fits the requirements without failing in terms of appearance or functionality. To this extent, the goal of this research is to develop packaging for 1 mm2 VCSEL chips with a diffuser on top that prevents fractures or damage to the package during heat cycle testing with multiple materials. The package was created using the applications SolidWorks 2017 and AutoCAD Mechanical 2017. The ANSYS Mechanical Structural FEA Analysis program simulated all packages for mechanical stress to guarantee that all packages generated were resilient to high temperature conditions. All packages exhibit no abnormalities and are robust for various temperatures ranging from low to high. Therefore, these packaged 1 mm2 VCSEL chips with a diffuser on top provide an effective approach for the application of VCSEL suitable in high temperature conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...