Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 22(14): 3486-92, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12853464

ABSTRACT

In this review, we discuss the structural and functional diversity of protein-protein interactions (PPIs) based primarily on protein families for which three-dimensional structural data are available. PPIs play diverse roles in biology and differ based on the composition, affinity and whether the association is permanent or transient. In vivo, the protomer's localization, concentration and local environment can affect the interaction between protomers and are vital to control the composition and oligomeric state of protein complexes. Since a change in quaternary state is often coupled with biological function or activity, transient PPIs are important biological regulators. Structural characteristics of different types of PPIs are discussed and related to their physiological function, specificity and evolution.


Subject(s)
Proteins/metabolism , Animals , Dimerization , Humans , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Quaternary , Protein Subunits/chemistry , Proteins/chemistry
2.
J Mol Biol ; 325(5): 991-1018, 2003 Jan 31.
Article in English | MEDLINE | ID: mdl-12527304

ABSTRACT

Protein-protein complexes that dissociate and associate readily, often depending on the physiological condition or environment, play an important role in many biological processes. In order to characterise these "transient" protein-protein interactions, two sets of complexes were collected and analysed. The first set consists of 16 experimentally validated "weak" transient homodimers, which are known to exist as monomers and dimers at physiological concentration, with dissociation constants in the micromolar range. A set of 23 functionally validated transient (i.e. intracellular signalling) heterodimers comprise the second set. This set includes complexes that are more stable, with nanomolar binding affinities, and require a molecular trigger to form and break the interaction. In comparison to more stable homodimeric complexes, the weak homodimers demonstrate smaller contact areas between protomers and the interfaces are more planar and polar on average. The physicochemical and geometrical properties of these weak homodimers more closely resemble those of non-obligate hetero-oligomeric complexes, whose components can exist either as monomers or as complexes in vivo. In contrast to the weak transient dimers, "strong" transient dimers often undergo large conformational changes upon association/dissociation and are characterised with larger, less planar and sometimes more hydrophobic interfaces. From sequence alignments we find that the interface residues of the weak transient homodimers are generally more conserved than surface residues, consistent with being constrained to maintain the protein-protein interaction during evolution. Protein families that include members with different oligomeric states or structures are identified, and found to exhibit a lower sequence conservation at the interface. The results are discussed in terms of the physiological function and evolution of protein-protein interactions.


Subject(s)
Dimerization , Protein Binding , Protein Conformation , Proteins/chemistry , Proteins/metabolism , Animals , Binding Sites , Conserved Sequence , Databases, Factual , Humans , Models, Molecular , Protein Folding , Sequence Homology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...