Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(25): 9385-9392, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34143603

ABSTRACT

Quantum interference (QI) plays an imperative role in the operation of molecular devices within the phase-coherent length, and it is vital to harness the patterns of QI, i.e., constructive and destructive interference. However, the size of the single-molecule device is too small compared to most gate electrodes. Those gates act like a backgate to affect the molecular component uniformly. Switching the patterns of QI in the same molecular skeleton remains challenging. Here, we develop the atomically precise gating strategy that manipulates the frontier orbitals of molecular components, achieving the complete switching of QI patterns between destructive to constructive QI and leading to a significant conductance modulation at room temperature. The chemical gating effect is exerted locally on the pyridine nitrogen through the selective interaction to cationic reagents, with which we can also control the switching reversibility as desired. We demonstrate the unique effect of atomically precise gating to modulate the quantum interference at the single-molecule scale, opening an avenue to develop new-conceptual electronic devices.

2.
Nanoscale ; 10(40): 19220-19223, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30303219

ABSTRACT

Nanoscale thermoelectricity is an attractive target technology, because it can convert ambient heat into electricity for powering embedded devices in the internet of things. We demonstrate that the thermoelectric performance of graphene nanoconstrictions can be significantly enhanced by the presence of stable radical adsorbates, because radical molecules adsorbed on the graphene nanoconstrictions create singly-occupied orbitals in the vicinity of Fermi energy. This in turn leads to sharp features in their transmission functions close to Fermi energy, which increases the electrical conductance and Seebeck coefficient of the nanoconstrictions. This is a generic feature of radical adsorbates and can be employed in the design of new thermoelectric devices and materials.

3.
J Am Chem Soc ; 140(40): 12877-12883, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30207150

ABSTRACT

A key goal in molecular electronics has been to find molecules that facilitate efficient charge transport over long distances. Normally, molecular wires become less conductive with increasing length. Here, we report a series of fused porphyrin oligomers for which the conductance increases substantially with length by >10-fold at a bias of 0.7 V. This exceptional behavior can be attributed to the rapid decrease of the HOMO-LUMO gap with the length of fused porphyrins. In contrast, for butadiyne-linked porphyrin oligomers with moderate inter-ring coupling, a normal conductance decrease with length is found for all bias voltages explored (±1 V), although the attenuation factor (ß) decreases from ca. 2 nm-1 at low bias to <1 nm-1 at 0.9 V, highlighting that ß is not an intrinsic molecular property. Further theoretical analysis using density functional theory underlines the role of intersite coupling and indicates that this large increase in conductance with length at increasing voltages can be generalized to other molecular oligomers.

4.
J Am Chem Soc ; 140(2): 710-718, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29260871

ABSTRACT

We have employed the scanning tunneling microscope break-junction technique to investigate the single-molecule conductance of a family of 5,15-diaryl porphyrins bearing thioacetyl (SAc) or methylsulfide (SMe) binding groups at the ortho position of the phenyl rings (S2 compounds). These ortho substituents lead to two atropisomers, cis and trans, for each compound, which do not interconvert in solution under ambient conditions; even at high temperatures, isomerization takes several hours (half-life 15 h at 140 °C for SAc in C2Cl4D2). All the S2 compounds exhibit two conductance groups, and comparison with a monothiolated (S1) compound shows the higher group arises from a direct Au-porphyrin interaction. The lower conductance group is associated with the S-to-S pathway. When the binding group is SMe, the difference in junction length distribution reflects the difference in S-S distance (0.3 nm) between the two isomers. In the case of SAc, there are no significant differences between the plateau length distributions of the two isomers, and both show maximal stretching distances well exceeding their calculated junction lengths. Contact deformation accounts for part of the extra length, but the results indicate that cis-to-trans conversion takes place in the junction for the cis isomer. The barrier to atropisomerization is lower than the strength of the thiolate Au-S and Au-Au bonds, but higher than that of the Au-SMe bond, which explains why the strain in the junction only induces isomerization in the SAc compound.

5.
Phys Chem Chem Phys ; 19(26): 17356-17359, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28650012

ABSTRACT

We investigated the thermoelectric properties of flat-stacked 5,15-diphenylporphyrins containing divalent metal ions Ni, Co, Cu or Zn, which are strongly coordinated with the nitrogens of pyridyl coated gold electrodes. Changing metal atom has little effect on the thermal conductance due to the phonons. The room-temperature Seebeck coefficients of these junctions are rather high, ranging from 90 µV K-1 for Cu, Ni and Zn-porphyrins to -16 µV K-1 for Co-porphyrin. These values could be further increased by lowering molecular energy levels relative to the DFT-predicted Fermi energy. In contrast, the phonon contribution to the thermal conductance of these junctions is rather insensitive to the choice of metal atom. The thermopower, thermal conductance and electrical conductance combined to yield the room-temperature values for the thermoelectric figure of merit ZT ranging from 1.6 for Cu porphyrin to ∼0.02 for Ni-porphyrin.

6.
Nanoscale ; 9(16): 5299-5304, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28398431

ABSTRACT

If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 µV K-1. These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

7.
Sci Rep ; 6: 37352, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869128

ABSTRACT

In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10-2 G0 for Ni-DPP up to 8.10-2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.


Subject(s)
Coordination Complexes/chemistry , Electric Conductivity , Metalloporphyrins/chemistry , Cobalt/chemistry , Copper/chemistry , Electrochemistry , Nickel/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...