Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 22(11): 1825-30, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11698345

ABSTRACT

As the primary metabolite of alcohol, acetaldehyde (AA) may be responsible for many pathological effects related to consumption of alcohol, such as esophageal cancer. The spectrum of p53 mutations in esophageal tumors is indicative of the involvement of exogenous agents, such as tobacco smoke. There is, however, no experimental proof for the involvement of alcohol as data on mutational spectrum induced by AA in human genes is completely lacking. The aim of this study is to investigate whether AA leaves mutational fingerprint in the HPRT reporter gene in human peripheral T cells. Pre-existing in vivo HPRT mutants were removed from PHA-stimulated T lymphocytes before in vitro treatment with 2.4 mM AA for 24 h. Following cell growth to allow mutation expression, independent 6-thioguanine-resistant mutants were selected from large numbers of subcultures showing a 3-fold induction of mutant frequency on average. A total of 73 induced and 36 spontaneous mutants were found to carry a missense, nonsense, frameshift or splice mutation. Base substitutions were identified in the coding or splicing sequences of 55 induced and 26 control mutants. The induced base changes were mainly G > A transition (40%, G on non-transcribed strand) followed by A > T transversions (14.5%, A on non-transcribed strand). The control mutants had significantly (P = 0.04) less G > A transition (15.4%) and completely lacked A > T transversions. We also identified 5'-AGG-3' or 5'-AAG-3' as potential target sequences for AA-induced G > A transitions. This specific mutational spectrum induced by AA is consistent with the known formation and persistency of N(2)-ethyl-2'-guanosine adduct and with the predominance of G > A transitions and mutations at A:T base pairs in the p53 gene of esophageal tumors. We conclude that AA may be involved in the pathogenesis of esophageal cancer.


Subject(s)
Acetaldehyde/pharmacology , Esophageal Neoplasms/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Point Mutation/drug effects , T-Lymphocytes/enzymology , Tumor Suppressor Protein p53/genetics , DNA Mutational Analysis , DNA Primers/chemistry , DNA, Complementary/genetics , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/etiology , Exons , Humans , Polymerase Chain Reaction
2.
Hum Genet ; 103(3): 311-8, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9799086

ABSTRACT

Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C-->T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C-->T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis.


Subject(s)
Hypoxanthine Phosphoribosyltransferase/genetics , Lesch-Nyhan Syndrome/genetics , Alu Elements/genetics , Base Sequence , Child, Preschool , DNA Mutational Analysis , Frameshift Mutation/genetics , Humans , Male , Molecular Sequence Data , Point Mutation/genetics , Sequence Analysis, DNA , Sequence Deletion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...