Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Paleoceanogr Paleoclimatol ; 37(8): e2021PA004405, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36248180

ABSTRACT

Model simulations of past climates are increasingly found to compare well with proxy data at a global scale, but regional discrepancies remain. A persistent issue in modeling past greenhouse climates has been the temperature difference between equatorial and (sub-)polar regions, which is typically much larger in simulations than proxy data suggest. Particularly in the Eocene, multiple temperature proxies suggest extreme warmth in the southwest Pacific Ocean, where model simulations consistently suggest temperate conditions. Here, we present new global ocean model simulations at 0.1° horizontal resolution for the middle-late Eocene. The eddies in the high-resolution model affect poleward heat transport and local time-mean flow in critical regions compared to the noneddying flow in the standard low-resolution simulations. As a result, the high-resolution simulations produce higher surface temperatures near Antarctica and lower surface temperatures near the equator compared to the low-resolution simulations, leading to better correspondence with proxy reconstructions. Crucially, the high-resolution simulations are also much more consistent with biogeographic patterns in endemic-Antarctic and low-latitude-derived plankton, and thus resolve the long-standing discrepancy of warm subpolar ocean temperatures and isolating polar gyre circulation. The results imply that strongly eddying model simulations are required to reconcile discrepancies between regional proxy data and models, and demonstrate the importance of accurate regional paleobathymetry for proxy-model comparisons.

2.
Geophys Res Lett ; 49(4): e2021GL096859, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35865999

ABSTRACT

Some lipid-biomarker-based sea surface temperature (SST) proxies applied in the modern Mediterranean Sea exhibit large offsets from expected values, generating uncertainties in climate reconstructions. Lateral transport of proxy carriers along ocean currents prior to burial can contribute to this offset between reconstructed and expected SSTs. We perform virtual particle tracking experiments to simulate transport prior to and during sinking and derive a quantitative estimate of transport bias for alkenones and glycerol dibiphytanyl glycerol tetraethers (GDGTs), which form the basis of the UK' 37 and TEX86 paleothermometers, respectively. We use a simple 30-day surface advection scenario and sinking speeds appropriate for the export of various proxy carriers (6, 12, 25, 50, 100, 250, 500, and 1000 md-1). For the assessed scenarios, lateral transport bias is generally small (always <0.85°C) within the Mediterranean Sea and does not substantially contribute to uncertainties in UK' 37- or TEX86-based SSTs.

3.
PLoS One ; 15(9): e0238650, 2020.
Article in English | MEDLINE | ID: mdl-32911487

ABSTRACT

Any type of non-buoyant material in the ocean is transported horizontally by currents during its sinking journey. This lateral transport can be far from negligible for small sinking velocities. To estimate its magnitude and direction, the material is often modelled as a set of Lagrangian particles advected by current velocities that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are strongly eddying, similar to the real ocean, providing results with a spatial resolution on the order of 10 km on a daily frequency. While the importance of eddies in OGCMs is well-appreciated in the physical oceanographic community, other marine research communities may not. Further, many long term climate modelling simulations (e.g. in paleoclimate) rely on lower spatial resolution models that do not capture mesoscale features. To demonstrate how much the absence of mesoscale features in low-resolution models influences the Lagrangian particle transport, we simulate the transport of sinking Lagrangian particles using low- and high-resolution global OGCMs, and assess the lateral transport differences resulting from the difference in spatial and temporal model resolution. We find major differences between the transport in the non-eddying OGCM and in the eddying OGCM. Addition of stochastic noise to the particle trajectories in the non-eddying OGCM parameterises the effect of eddies well in some cases (e.g. in the North Pacific gyre). The effect of a coarser temporal resolution (once every 5 days versus monthly) is smaller compared to a coarser spatial resolution (0.1° versus 1° horizontally). We recommend to use sinking Lagrangian particles, representing e.g. marine snow, microplankton or sinking plastic, only with velocity fields from eddying Eulerian OGCMs, requiring high-resolution models in e.g. paleoceanographic studies. To increase the accessibility of our particle trace simulations, we launch planktondrift.science.uu.nl, an online tool to reconstruct the surface origin of sedimentary particles in a specific location.


Subject(s)
Models, Theoretical , Oceans and Seas , Water Movements , Computer Simulation , Internationality
SELECTION OF CITATIONS
SEARCH DETAIL
...