Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Huntingtons Dis ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669553

ABSTRACT

 Juvenile Huntington's disease (JHD) is rare. In the first decade of life speech difficulties, rigidity, and dystonia are common clinical motor symptoms, whereas onset in the second decade motor symptoms may sometimes resemble adult-onset Huntington's disease (AOHD). Cognitive decline is mostly detected by declining school performances. Behavioral symptoms in general do not differ from AOHD but may be confused with autism spectrum disorder or attention deficit hyperactivity disorder and lead to misdiagnosis and/or diagnostic delay. JHD specific features are epilepsy, ataxia, spasticity, pain, itching, and possibly liver steatosis. Disease progression of JHD is faster compared to AOHD and the disease duration is shorter, particularly in case of higher CAG repeat lengths. The diagnosis is based on clinical judgement in combination with a positive family history and/or DNA analysis after careful consideration. Repeat length in JHD is usually >  55 and caused by anticipation, usually via paternal transmission. There are no pharmacological and multidisciplinary guidelines for JHD treatment. Future perspectives for earlier diagnosis are better diagnostic markers such as qualitative MRI and neurofilament light in serum.

2.
Cerebellum ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165578

ABSTRACT

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

3.
Neuromuscul Disord ; 33(8): 660-669, 2023 08.
Article in English | MEDLINE | ID: mdl-37419717

ABSTRACT

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.


Subject(s)
Myotonic Dystrophy , White Matter , Humans , Adult , Female , Male , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Myotonic Dystrophy/complications , Executive Function , Anisotropy , Brain/diagnostic imaging
4.
Med Phys ; 50(8): 4916-4929, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36750977

ABSTRACT

BACKGROUND: Automated segmentation of individual calf muscle compartments in 3D MR images is gaining importance in diagnosing muscle disease, monitoring its progression, and prediction of the disease course. Although deep convolutional neural networks have ushered in a revolution in medical image segmentation, achieving clinically acceptable results is a challenging task and the availability of sufficiently large annotated datasets still limits their applicability. PURPOSE: In this paper, we present a novel approach combing deep learning and graph optimization in the paradigm of assisted annotation for solving general segmentation problems in 3D, 4D, and generally n-D with limited annotation cost. METHODS: Deep LOGISMOS combines deep-learning-based pre-segmentation of objects of interest provided by our convolutional neural network, FilterNet+, and our 3D multi-objects LOGISMOS framework (layered optimal graph image segmentation of multiple objects and surfaces) that uses newly designed trainable machine-learned cost functions. In the paradigm of assisted annotation, multi-object JEI for efficient editing of automated Deep LOGISMOS segmentation was employed to form a new larger training set with significant decrease of manual tracing effort. RESULTS: We have evaluated our method on 350 lower leg (left/right) T1-weighted MR images from 93 subjects (47 healthy, 46 patients with muscular morbidity) by fourfold cross-validation. Compared with the fully manual annotation approach, the annotation cost with assisted annotation is reduced by 95%, from 8 h to 25 min in this study. The experimental results showed average Dice similarity coefficient (DSC) of 96.56 ± 0.26 % $96.56\pm 0.26 \%$ and average absolute surface positioning error of 0.63 pixels (0.44 mm) for the five 3D muscle compartments for each leg. These results significantly improve our previously reported method and outperform the state-of-the-art nnUNet method. CONCLUSIONS: Our proposed approach can not only dramatically reduce the expert's annotation efforts but also significantly improve the segmentation performance compared to the state-of-the-art nnUNet method. The notable performance improvements suggest the clinical-use potential of our new fully automated simultaneous segmentation of calf muscle compartments.


Subject(s)
Image Processing, Computer-Assisted , Leg , Humans , Image Processing, Computer-Assisted/methods , Leg/diagnostic imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Muscles/diagnostic imaging
5.
Mov Disord ; 38(1): 113-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36318082

ABSTRACT

BACKGROUND: Juvenile-onset Huntington's disease (JOHD) is a rare form of Huntington's disease (HD) characterized by symptom onset before the age of 21 years. Observational data in this cohort is lacking. OBJECTIVES: Quantify measures of disease progression for use in clinical trials of patients with JOHD. METHODS: Participants who received a motor diagnosis of HD before the age of 21 were included in the Kids-JOHD study. The comparator group consisted of children and young adults who were at-risk for inheriting the genetic mutation that causes HD, but who were found to have a CAG repeat in the non-expanded range (gene non-expanded [GNE]). RESULTS: Data were obtained between March 17, 2006, and February 13, 2020. There were 26 JOHD participants and 78 GNE participants who were comparable on age (16.03 vs. 14.43, respectively) and sex (53.8% female vs. 57.7% female, respectively). The mean annualized decrease in striatal volume in the JOHD group was -3.99% compared to -0.06% in the GNE (mean difference [MD], -3.93%; 95% confidence intervals [CI], [-4.98 to -2.80], FDR < 0.0001). The mean increase in the Unified Huntington's Disease Rating Scale Total Motor Score per year in the JOHD group was 7.29 points compared to a mean decrease of -0.21 point in the GNE (MD, 7.5; 95% CI, [5.71-9.28], FDR < 0·0001). CONCLUSIONS: These findings demonstrate that structural brain imaging and clinical measures in JOHD may be potential biomarkers of disease progression for use in clinical trials. Collaborative efforts are required to validate these results in a larger cohort of patients with JOHD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Huntington Disease , Movement Disorders , Child , Young Adult , Humans , Female , Adult , Male , Huntington Disease/genetics , Huntington Disease/diagnosis , Brain , Disease Progression , Biomarkers , Longitudinal Studies
6.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35962273

ABSTRACT

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Subject(s)
Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/epidemiology , Patient Acuity , Disease Progression
8.
Brain Behav ; 12(7): e2630, 2022 07.
Article in English | MEDLINE | ID: mdl-35604958

ABSTRACT

INTRODUCTION: We compared neuropsychiatric symptoms between child and adolescent huntingtin gene-mutation carriers and noncarriers. Given previous evidence of atypical striatal development in carriers, we also assessed the relationship between neuropsychiatric traits and striatal development. METHODS: Participants between 6 and 18 years old were recruited from families affected by Huntington's disease and tested for the huntingtin gene expansion. Neuropsychiatric traits were assessed using the Pediatric Behavior Scale and the Behavior Rating Inventory of Executive Function. Striatal volumes were extracted from 3T neuro-anatomical images. Multivariable linear regression models were conducted to evaluate the impact of group (i.e., gene nonexpanded [GNE] or gene expanded [GE]), age, and trajectory of striatal growth on neuropsychiatric symptoms. RESULTS: There were no group differences in any behavioral measure with the exception of depression/anxiety score, which was higher in the GNE group compared to the GE group (estimate = 4.58, t(129) = 2.52, FDR = 0.051). The growth trajectory of striatal volume predicted depression scores (estimate = 0.429, 95% CI 0.15:0.71, p = .0029), where a negative slope of striatal volume over time was associated with lower depression/anxiety. CONCLUSIONS: The current findings show that GE children may have lower depression/anxiety compared to their peers. Previously, we observed a unique pattern of early striatal hypertrophy and continued decrement in volume over time among GE children and adolescents. In contrast, GNE individuals largely show striatal volume growth. These findings suggest that the lower scores of depression and anxiety seen in GE children and adolescents may be associated with differential growth of the striatum.


Subject(s)
Huntington Disease , Adolescent , Anxiety/genetics , Child , Corpus Striatum/diagnostic imaging , Humans , Huntingtin Protein , Huntington Disease/genetics , Mutation , Neostriatum
9.
Mov Disord ; 37(7): 1526-1531, 2022 07.
Article in English | MEDLINE | ID: mdl-35437792

ABSTRACT

BACKGROUND: Juvenile-onset Huntington's disease (JOHD) is a rare and particularly devastating form of Huntington's disease (HD) for which clinical diagnosis is challenging and robust outcome measures are lacking. Neurofilament light protein (NfL) in plasma has emerged as a prognostic biomarker for adult-onset HD. METHODS: We performed a retrospective analysis of samples and data collected between 2009 and 2020 from the Kids-HD and Kids-JHD studies. Plasma samples from children and young adults with JOHD, premanifest HD (preHD) mutation carriers, and age-matched controls were used to quantify plasma NfL concentrations using ultrasensitive immunoassay. RESULTS: We report elevated plasma NfL concentrations in JOHD and premanifest HD mutation-carrying children. In pediatric HD mutation carriers who were within 20 years of their predicted onset and patients with JOHD, plasma NfL level was associated with caudate and putamen volumes. CONCLUSIONS: Quantifying plasma NfL concentration may assist clinical diagnosis and therapeutic trial design in the pediatric population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Subject(s)
Huntington Disease , Biomarkers , Child , Disease Progression , Humans , Huntington Disease/diagnosis , Huntington Disease/genetics , Intermediate Filaments/metabolism , Neurofilament Proteins , Retrospective Studies , Tumor Necrosis Factor Ligand Superfamily Member 14 , Young Adult
10.
Neuromuscul Disord ; 32(5): 377-389, 2022 05.
Article in English | MEDLINE | ID: mdl-35361525

ABSTRACT

Abnormalities of sleep are common in myotonic dystrophy type 1 (DM1), but few previous studies have combined polysomnography with detailed clinical measures and brain imaging. In the present study, domiciliary polysomnography, symptom questionnaires and cognitive evaluation were undertaken in 39 DM1-affected individuals. Structural brain MRI was completed in those without contra-indication (n = 32). Polysomnograms were adequate for analysis in 36 participants. Sleep efficiency was reduced, and sleep architecture altered in keeping with previous studies. Twenty participants (56%) had moderate or severe sleep-disordered breathing (apnoea-hypopnoea index [AHI] ≥ 15). In linear modelling, apnoeas were positively associated with increasing age and male sex. AHI ≥ 15 was further associated with greater daytime pCO2 and self-reported physical impairment, somnolence and fatigue. Percentage REM sleep was inversely associated with cerebral grey matter volume, stage 1 sleep was positively associated with occipital lobe volume and stage 2 sleep with amygdala volume. Hippocampus volume was positively correlated with self-reported fatigue and somnolence. Linear relationships were also observed between measures of sleep architecture and cognitive performance. Findings broadly support the hypothesis that changes in sleep architecture and excessive somnolence in DM1 reflect the primary disease process in the central nervous system.


Subject(s)
Disorders of Excessive Somnolence , Myotonic Dystrophy , Disorders of Excessive Somnolence/complications , Disorders of Excessive Somnolence/etiology , Fatigue/complications , Fatigue/etiology , Humans , Male , Myotonic Dystrophy/complications , Myotonic Dystrophy/diagnostic imaging , Sleep , Sleepiness
11.
J Huntingtons Dis ; 11(2): 173-178, 2022.
Article in English | MEDLINE | ID: mdl-35275555

ABSTRACT

BACKGROUND: Molecular studies provide evidence that mutant huntingtin (mHTT) affects early cortical development; however, cortical development has not been evaluated in child and adolescent carriers of mHTT. OBJECTIVE: To evaluate the impact of mHTT on the developmental trajectories of cortical thickness and surface area. METHODS: Children and adolescents (6-18 years) participated in the KidsHD study. mHTT carrier status was determined for research purposes only to classify participants as gene expanded (GE) and gene non-expanded (GNE). Cortical features were extracted from 3T neuroimaging using FreeSurfer. Nonlinear mixed effects models were conducted to determine if age, group, and CAG repeat were associated with cortical morphometry. RESULTS: Age-related changes in cortical morphometry were similar across groups. Expanded CAG repeat was not significantly associated with cortical features. CONCLUSION: While striatal development is markedly different in GE and GNE, developmental change of the cortex appears grossly normal among child and adolescent carrier of mHTT.


Subject(s)
Huntington Disease , Adolescent , Child , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics
12.
Pediatr Res ; 91(4): 947-954, 2022 03.
Article in English | MEDLINE | ID: mdl-33911194

ABSTRACT

BACKGROUND: The objective of this study was to determine sex-specific differences in inflammatory cytokine responses to red blood cell (RBC) transfusion in preterm infants in the neonatal period and their relationship to later neurocognitive status. METHODS: Infants with a birth weight <1000 g and gestational age 22-29 weeks were enrolled in the Transfusion of Prematures (TOP) trial. The total number of transfusions was used as a marker of transfusion status. Nineteen cytokines and biomarkers were analyzed from 71 infants longitudinally during the neonatal period. Twenty-six infants completed the Bayley Scales of Infant & Toddler Development, 3rd Edition (Bayley-III) at 12 months' corrected age. RESULTS: Nine cytokine levels were significantly elevated in proportion to the number of transfusions received. Of those, one cytokine showed a sex-specific finding (p = 0.004): monocyte chemoattractant protein-1, MCP-1, rose substantially in females (8.9% change per additional transfusion), but not in males (-0.8% change). Higher concentrations of MCP-1 exclusively were associated with worse Bayley-III scores: decreased cognitive raw scores (p = 0.0005) and motor scaled scores (p < 0.0001). CONCLUSIONS: This study provides evidence of a sex-specific difference in the inflammatory response to RBC transfusions during neonatal life, with MCP-1 levels rising only in females and inversely correlating with neurocognitive status at 12 months old. IMPACT: It is important to understand the risk factors for abnormal neurodevelopment in preterm infants, including anemia and RBC transfusion, in order to improve outcomes and provide potential targets for therapy. Our study investigates and provides the first evidence of sex-specific differences in inflammatory cytokine responses to RBC transfusions in preterm infants in the neonatal period, and their relationship to later cognitive outcomes. This study critically suggests that different transfusion thresholds may have a sex-specific effect on neurodevelopment: females have worse cognitive outcomes with increased number of transfusions, while males have worse outcomes with lower number of transfusions.


Subject(s)
Cytokines , Erythrocyte Transfusion , Infant, Premature , Neurocognitive Disorders , Cytokines/metabolism , Erythrocyte Transfusion/adverse effects , Female , Humans , Infant, Low Birth Weight , Infant, Newborn , Male , Neurocognitive Disorders/epidemiology , Sex Distribution , Treatment Outcome
13.
Pediatr Res ; 91(7): 1735-1740, 2022 06.
Article in English | MEDLINE | ID: mdl-34274959

ABSTRACT

BACKGROUND: Neurofilament light-chain (NfL) protein is a blood-based marker of neuroaxonal injury. We sought to (1) compare plasma NfL levels in children with chronic kidney disease (CKD) and healthy peers, (2) characterize the relationship between NfL level and kidney function, and (3) evaluate NfL as a predictor of abnormal brain structure in CKD. METHODS: Sixteen children with CKD due to congenital kidney anomalies and 23 typically developing peers were included. Plasma NfL was quantified using single-molecule array immunoassay. Participants underwent structural magnetic resonance imaging. Multiple linear regression models were used to evaluate the association between plasma NfL levels, kidney function, and brain structure. RESULTS: An age × group interaction was identified whereby NfL levels increased with age in the CKD group only (estimate = 0.65; confidence interval (CI) = 0.08-1.22; p = 0.026). Decreased kidney function was associated with higher NfL levels (estimate = -0.10; CI = -0.16 to -0.04; p = 0.003). Lower cerebellar gray matter volume predicted increased plasma NfL levels (estimate = -0.00024; CI = -0.00039 to 0.00009; p = 0.004) within the CKD group. CONCLUSIONS: Children with CKD show accelerated age-related increases in NfL levels. NfL level is associated with lower kidney function and abnormal brain structure in CKD. IMPACT: NfL is a component of the neuronal cytoskeleton providing structural axonal support. Elevated NfL has been described in relation to gray and white matter brain volume loss. We have previously described the abnormal cerebellar gray matter in CKD. We explored the relationship between NfL, CKD, and brain volume. There is an accelerated, age-related increase in NfL level in CKD. Within the CKD sample, NfL level is associated with abnormal kidney function and brain structure. Decreased kidney function may be linked to abnormal neuronal integrity in pediatric CKD.


Subject(s)
Neurofilament Proteins , Renal Insufficiency, Chronic , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Child , Gray Matter , Humans , Intermediate Filaments
14.
J Pediatr ; 242: 166-173.e3, 2022 03.
Article in English | MEDLINE | ID: mdl-34758354

ABSTRACT

OBJECTIVE: To investigate the associations between neurocognition and white matter integrity in children with chronic kidney disease (CKD). STUDY DESIGN: This cross-sectional study included 17 boys (age 6-16 years) with a diagnosis of mild to moderate (stages 1-3, nondialysis/nontransplant) CKD because of congenital anomalies of the kidney and urinary tract and 20 typically developing community controls. Participants underwent 3T neuroimaging and diffusion-weighted magnetic resonance imaging to assess white matter fractional anisotropy. Multivariable linear regression models were used to evaluate the impact of each group (controls vs CKD) on white matter fractional anisotropy, adjusting for age. Associations between white matter fractional anisotropy and neurocognitive abilities within the CKD group were also evaluated using regression models that were adjusted for age. The false discovery rate was used to account for multiple comparisons; wherein false discovery values <0.10 were considered significant. RESULTS: Global white matter fractional anisotropy was reduced in patients with CKD relative to controls (standardized estimate = -0.38, 95% CI -0.69:-0.07), driven by reductions within the body of the corpus callosum (standardized estimate = -0.44, 95% CI -0.75:-0.13), cerebral peduncle (SE = -0.37, 95% CI -0.67:-0.07), cingulum (hippocampus) (standardized estimate = -0.45, 95% CI -0.75:-0.14), and posterior limb of the internal capsule (standardized estimate = -0.46, 95% CI -0.76:-0.15). Medical variables and neurocognitive abilities were not significantly associated with white matter fractional anisotropy. CONCLUSIONS: White matter development is vulnerable in children with CKD because of congenital causes, even prior to the need for dialysis or transplantation.


Subject(s)
Renal Insufficiency, Chronic , White Matter , Adolescent , Anisotropy , Brain/diagnostic imaging , Child , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Male , White Matter/diagnostic imaging
15.
Front Neurol ; 12: 700796, 2021.
Article in English | MEDLINE | ID: mdl-34276551

ABSTRACT

Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults, and is primarily characterized by muscle weakness and myotonia, yet some of the most disabling symptoms of the disease are cognitive and behavioral. Here we evaluated several of these non-motor symptoms from a cross-sectional time-point in one of the largest longitudinal studies to date, including full-scale intelligence quotient, depression, anxiety, apathy, sleep, and cerebral white matter fractional anisotropy in a group of 39 adult-onset myotonic dystrophy type 1 participants (27 female) compared to 79 unaffected control participants (46 female). We show that intelligence quotient was significantly associated with depression (P < 0.0001) and anxiety (P = 0.018), but not apathy (P < 0.058) or hypersomnolence (P = 0.266) in the DM1 group. When controlling for intelligence quotient, cerebral white matter fractional anisotropy was significantly associated with apathy (P = 0.042) and hypersomnolence (P = 0.034), but not depression (P = 0.679) or anxiety (P = 0.731) in the myotonic dystrophy type 1 group. Finally, we found that disease duration was significantly associated with apathy (P < 0.0001), hypersomnolence (P < 0.001), IQ (P = 0.038), and cerebral white matter fractional anisotropy (P < 0.001), but not depression (P = 0.271) or anxiety (P = 0.508). Our results support the hypothesis that cognitive deficits, hypersomnolence, and apathy, are due to the underlying neuropathology of myotonic dystrophy type 1, as measured by cerebral white matter fractional anisotropy and disease duration. Whereas elevated symptoms of depression and anxiety in myotonic dystrophy type 1 are secondary to the physical symptoms and the emotional stress of coping with a chronic and debilitating disease. Results from this work contribute to a better understanding of disease neuropathology and represent important therapeutic targets for clinical trials.

16.
Neurol Genet ; 7(2): e577, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33912661

ABSTRACT

OBJECTIVE: The goal of the study was to identify brain and functional features associated with premanifest phases of adult-onset myotonic dystrophy type 1 (i.e., PreDM1). METHODS: This cross-sectional study included 68 healthy adults (mean age = 43.4 years, SD = 12.9), 13 individuals with PreDM1 (mean age: 47.4 years, SD = 16.3), and 37 individuals with manifest DM1 (mean age = 45.2 years, SD = 9.3). The primary outcome measures included fractional anisotropy (FA), motor measures (Muscle Impairment Rating Scale, Grooved Pegboard, Finger-Tapping Test, and grip force), general cognitive abilities (Wechsler Adult Intelligence Scales), sleep quality (Scales for Outcomes in Parkinson's Disease-Sleep), and apathy (Apathy Evaluation Scale). RESULTS: Individuals with PreDM1 exhibited an intermediate level of white matter FA abnormality, where whole-brain FA was lower relative to healthy controls (difference of the estimated marginal mean [EMMdifference] = 0.02, 95% confidence interval (CI) 0.01-0.03, p < 0.001), but the PreDM1 group had significantly higher FA than did individuals with manifest DM1 (EMMdifference = 0.02, 95% CI 0.009-0.03, p < 0.001). Individuals with PreDM1 exhibited reduced performance on the finger-tapping task relative to control peers (EMMdifference = 5.70, 95% CI 0.51-11.00, p = 0.03), but performance of the PreDM1 group was better than that of the manifest DM1 group (EMMdifference = 5.60, 95% CI 0.11-11.00, p = 0.05). Hypersomnolence in PreDM1 was intermediate between controls (EMMdifference = -1.70, 95% CI -3.10-0.35, p = 0.01) and manifest DM1 (EMMdifference = -2.10, 95% CI -3.50-0.60, p = 0.006). CONCLUSIONS: Our findings highlight key CNS and functional deficits associated with PreDM1, offering insight in early disease course.

17.
Neurology ; 96(19): e2407-e2413, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33692166

ABSTRACT

OBJECTIVE: To investigate the relationships between CAG repeat length in the huntingtin gene and cognitive performance in participants above and below the disease threshold for Huntington disease (HD), we performed a cross-sectional analysis of the Enroll-HD database. METHODS: We analyzed data from young, developing adults (≤30 years of age) without a history of depression, apathy, or cognitive deficits. We included participants with and without the gene expansion (CAG ≥36) for HD. All participants had to have a Total Functional Capacity Score of 13, a diagnostic confidence level of zero, and a total motor score of <10 and had to be >28.6 years from their predicted motor onset. We performed regression analyses to investigate the nonlinear relationship between CAG repeat length and various cognitive measures controlling for age, sex, and education level. RESULTS: There were significant positive relationships between CAG repeat length and the Symbol Digit Modalities, Stroop Color Naming, and Stroop Interference test scores. There were significant negative relationships between CAG repeat length and scores on Parts A and B of the Trails Making Test (p < 0.05), indicating that longer CAG repeat lengths were associated with better performance. DISCUSSION: An increasing number of CAG repeats in the huntingtin gene below disease threshold and low pathologic CAG ranges were associated with some improvements in cognitive performance. These findings outline the relationship between CAG repeats within the huntingtin gene and cognitive development. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that CAG repeat length is positively associated with cognitive function across a spectrum of CAG repeat lengths.


Subject(s)
Cognition/physiology , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/psychology , Trinucleotide Repeat Expansion/genetics , Adolescent , Adult , Cross-Sectional Studies , Databases, Genetic , Female , Humans , Huntington Disease/diagnosis , Male , Young Adult
18.
Sci Rep ; 11(1): 4886, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649422

ABSTRACT

Deficits in white matter (WM) integrity and motor symptoms are among the most robust and reproducible features of myotonic dystrophy type 1 (DM1). In the present study, we investigate whether WM integrity, obtained from diffusion-weighted MRI, corresponds to quantifiable motor outcomes (e.g., fine motor skills and grip strength) and patient-reported, subjective motor deficits. Critically, we explore these relationships in the context of other potentially causative variables, including: disease duration, elapsed time since motor symptom onset; and genetic burden, the number of excessive CTG repeats causing DM1. We found that fractional anisotropy (a measure of WM integrity) throughout the cerebrum was the strongest predictor of grip strength independently of disease duration and genetic burden, while radial diffusivity predicted fine motor skill (peg board performance). Axial diffusivity did not predict motor outcomes. Our results are consistent with the notion that systemic degradation of WM in DM1 mediates the relationship between DM1 progression and genetic burden with motor outcomes of the disease. Our results suggest that tracking changes in WM integrity over time may be a valuable biomarker for tracking therapeutic interventions, such as future gene therapies, for DM1.


Subject(s)
Myotonic Dystrophy , White Matter/pathology , Adult , Female , Humans , Male , Middle Aged , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology
19.
Neurol Genet ; 7(1): e537, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33575482

ABSTRACT

OBJECTIVE: Myotonic dystrophy is a multisystem disorder caused by a trinucleotide repeat expansion on the myotonic dystrophy protein kinase (DMPK) gene. To determine whether wildtype DMPK expression patterns vary as a function of age, we analyzed DMPK expression in the brain from 99 donors ranging from 5 postconceptional weeks to 80 years old. METHODS: We used the BrainSpan messenger RNA sequencing and the Yale Microarray data sets, which included brain tissue samples from 42 and 57 donors, respectively. Collectively, donors ranged in age from 5 postconceptional weeks to 80 years old. DMPK expression was normalized for each donor across regions available in both data sets. Restricted cubic spline linear regression models were used to analyze the effects of log-transformed age and sex on normalized DMPK expression data. RESULTS: Age was a statistically significant predictor of normalized DMPK expression pattern in the human brain in the BrainSpan (p < 0.005) and Yale data sets (p < 0.005). Sex was not a significant predictor. Across both data sets, normalized wildtype DMPK expression steadily increases during fetal development, peaks around birth, and then declines to reach a nadir around age 10. CONCLUSIONS: Peak expression of DMPK coincides with a time of dynamic brain development. Abnormal brain DMPK expression due to myotonic dystrophy may have implications for early brain development.

20.
Muscle Nerve ; 63(4): 553-562, 2021 04.
Article in English | MEDLINE | ID: mdl-33462896

ABSTRACT

BACKGROUND: Quantitative muscle MRI as a sensitive marker of early muscle pathology and disease progression in adult-onset myotonic dystrophy type 1. The utility of muscle MRI as a marker of muscle pathology and disease progression in adult-onset myotonic dystrophy type 1 (DM1) was evaluated. METHODS: This prospective, longitudinal study included 67 observations from 36 DM1 patients (50% female), and 92 observations from 49 healthy adults (49% female). Lower-leg 3T magnetic resonance imaging (MRI) scans were acquired. Volume and fat fraction (FF) were estimated using a three-point Dixon method, and T2-relaxometry was determined using a multi-echo spin-echo sequence. Muscles were segmented automatically. Mixed linear models were conducted to determine group differences across muscles and image modality, accounting for age, sex, and repeated observations. Differences in rate of change in volume, T2-relaxometry, and FF were also determined with mixed linear regression that included a group by elapsed time interaction. RESULTS: Compared with healthy adults, DM1 patients exhibited reduced volume of the tibialis anterior, soleus, and gastrocnemius (GAS) (all, P < .05). T2-relaxometry and FF were increased across all calf muscles in DM1 compared to controls. (all, P < .01). Signs of muscle pathology, including reduced volume, and increased T2-relaxometry and FF were already noted in DM1 patients who did not exhibit clinical motor symptoms of DM1. As a group, DM1 patients exhibited a more rapid change than did controls in tibialis posterior volume (P = .05) and GAS T2-relaxometry (P = .03) and FF (P = .06). CONCLUSIONS: Muscle MRI renders sensitive, early markers of muscle pathology and disease progression in DM1. T2 relaxometry may be particularly sensitive to early muscle changes related to DM1.


Subject(s)
Leg/pathology , Magnetic Resonance Imaging , Muscle, Skeletal/pathology , Myotonic Dystrophy/pathology , Adolescent , Adult , Aged , Biomarkers/analysis , Female , Humans , Leg/physiopathology , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Muscle, Skeletal/physiopathology , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/physiopathology , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...