Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 87(2): 1046-1061, 2022 02.
Article in English | MEDLINE | ID: mdl-34453458

ABSTRACT

PURPOSE: To synchronize and pass information between a wireless motion-tracking device and a pulse sequence and show how this can be used to implement customizable navigator interleaving schemes that are part of the pulse sequence design. METHODS: The device tracks motion by sampling the voltages induced in 3 orthogonal pickup coils by the changing gradient fields. These coils were modified to also detect RF-transmit events using a 3D RF-detection circuit. The device could then detect and decode a set RF signatures while ignoring excitations in the parent pulse sequence. A set of unique RF signatures were then paired with a collection of navigators and used to trigger readouts on the wireless device synchronous to the pulse sequence execution. Navigator interleaving schemes were then demonstrated in 3D RF-spoiled gradient echo, T1 -FLAIR (fluid-attenuated inversion recovery) PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction), and T2 -FLAIR PROPELLER pulse sequences. RESULTS: Excitations in the parent pulse sequences were successfully rejected and the RF signatures successfully decoded. For the 3D gradient echo sequence, distortions were removed by interleaving flipped polarity navigators and taking the difference between consecutive readouts. The impact on scan duration was reduced by 54% by breaking up the navigators into smaller parts. Successful motion correction was performed using the PROPELLER pulse sequences in 3 Tesla and 1.5 Tesla MRI scanners without modifications to the device hardware or software. CONCLUSION: The proposed RF signature-based triggering scheme enables complex interactions between the pulse sequence and a wireless device. Thus, enabling prospective motion correction that is repeatable, versatile, and minimally invasive with respect to hardware setup.


Subject(s)
Brain , Magnetic Resonance Imaging , Artifacts , Brain/diagnostic imaging , Motion , Neuroimaging , Prospective Studies
2.
Magn Reson Med ; 87(5): 2178-2193, 2022 05.
Article in English | MEDLINE | ID: mdl-34904751

ABSTRACT

PURPOSE: Implement a fast, motion-robust pulse sequence that acquires T1 -weighted, T2 -weighted, T2* -weighted, T2 fluid-attenuated inversion recovery, and DWI data in one run with only one prescription and one prescan. METHODS: A software framework was developed that configures and runs several sequences in one main sequence. Based on that framework, the NeuroMix sequence was implemented, containing motion robust single-shot sequences using EPI and fast spin echo (FSE) readouts (without EPI distortions). Optional multi-shot sequences that provide better contrast, higher resolution, or isotropic resolution could also be run within the NeuroMix sequence. An optimized acquisition order was implemented that minimizes times where no data is acquired. RESULTS: NeuroMix is customizable and takes between 1:20 and 4 min for a full brain scan. A comparison with the predecessor EPIMix revealed significant improvements for T2 -weighted and T2 fluid-attenuated inversion recovery, while taking only 8 s longer for a similar configuration. The optional contrasts were less motion robust but offered a significant increase in quality, detail, and contrast. Initial clinical scans on 1 pediatric and 1 adult patient showed encouraging image quality. CONCLUSION: The single-shot FSE readouts for T2 -weighted and T2 fluid-attenuated inversion recovery and the optional multishot FSE and 3D-EPI contrasts significantly increased diagnostic value compared with EPIMix, allowing NeuroMix to be considered as a standalone brain MRI application.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Adult , Brain/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging/methods , Motion , Neuroimaging/methods , Software
3.
Magn Reson Med ; 86(4): 1970-1982, 2021 10.
Article in English | MEDLINE | ID: mdl-34076922

ABSTRACT

PURPOSE: To enable SWI that is robust to severe head movement. METHODS: Prospective motion correction using a markerless optical tracker was applied to all pulse sequences. Three-dimensional gradient-echo and 3D EPI were used as reference sequences, but were expected to be sensitive to motion-induced B0 changes, as the long TE required for SWI allows phase discrepancies to accumulate between shots. Therefore, 2D interleaved snapshot EPI was investigated for motion-robust SWI and compared with conventional 2D EPI. Repeated signal averages were retrospectively corrected for motion. The sequences were evaluated at 3 T through controlled motion experiments involving two cooperative volunteers and SWI of a tumor patient. RESULTS: The performed continuous head motion was in the range of 5-8° rotations. The image quality of the 3D sequences and conventional 2D EPI was poor unless the rotational motion axis was parallel to B0 . Interleaved snapshot EPI had minimal intraslice phase discrepancies due to its small temporal footprint. Phase inconsistency between signal averages was well tolerated due to the high-pass filter effect of the SWI processing. Interleaved snapshot EPI with prospective and retrospective motion correction demonstrated similar image quality, regardless of whether motion was present. Lesion depiction was equal to 3D EPI with matching resolution. CONCLUSION: Susceptibility-based imaging can be severely corrupted by head movement despite accurate prospective motion correction. Interleaved snapshot EPI is a superior alternative for patients who are prone to move and offers SWI which is insensitive to motion when combined with prospective and retrospective motion correction.


Subject(s)
Brain , Echo-Planar Imaging , Artifacts , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Prospective Studies , Retrospective Studies
4.
Magn Reson Med ; 85(2): 868-882, 2021 02.
Article in English | MEDLINE | ID: mdl-32871026

ABSTRACT

PURPOSE: The purpose of this work is to describe a T1 -weighted fluid-attenuated inversion recovery (FLAIR) sequence that is able to produce sharp magnetic resonance images even if the subject is moving their head throughout the acquisition. METHODS: The robustness to motion artifacts and retrospective motion correction capabilities of the PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) trajectory were combined with prospective motion correction. The prospective correction was done using an intelligent marker attached to the subject. This marker wirelessly synchronizes to the pulse sequence to measure the directionality and magnitude of the magnetic fields present in the MRI machine during a short navigator, thus enabling it to determine its position and orientation in the scanner coordinate frame. Three approaches to incorporating the marker-navigator into the PROPELLER sequence were evaluated. The specific absorption rate, and subsequent scan time, of the T1 -weighted FLAIR PROPELLER sequence, was reduced using a variable refocusing flip-angle scheme. Evaluations of motion correction performance were done with 4 volunteers and 3 types of head motion. RESULTS: During minimal out-of-plane movement, retrospective PROPELLER correction performed similarly to the prospective correction. However, the prospective clearly outperformed the retrospective correction when there was out-of-plane motion. Finally, the combination of retrospective and prospective correction produced the sharpest images even during large continuous motion. CONCLUSION: Prospective motion correction of a PROPELLER sequence makes it possible to handle continuous, large, and high-speed head motions with only minor reductions in image quality.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Motion , Prospective Studies , Retrospective Studies
5.
Magn Reson Med ; 85(3): 1427-1440, 2021 03.
Article in English | MEDLINE | ID: mdl-32989859

ABSTRACT

PURPOSE: To enable motion-robust diffusion weighted imaging of the brain using well-established imaging techniques. METHODS: An optical markerless tracking system was used to estimate and correct for rigid body motion of the head in real time during scanning. The imaging coordinate system was updated before each excitation pulse in a single-shot EPI sequence accelerated by GRAPPA with motion-robust calibration. Full Fourier imaging was used to reduce effects of motion during diffusion encoding. Subjects were imaged while performing prescribed motion patterns, each repeated with prospective motion correction on and off. RESULTS: Prospective motion correction with dynamic ghost correction enabled high quality DWI in the presence of fast and continuous motion within a 10° range. Images acquired without motion were not degraded by the prospective correction. Calculated diffusion tensors tolerated the motion well, but ADC values were slightly increased. CONCLUSIONS: Prospective correction by markerless optical tracking minimizes patient interaction and appears to be well suited for EPI-based DWI of patient groups unable to remain still including those who are not compliant with markers.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Artifacts , Brain/diagnostic imaging , Humans , Motion , Prospective Studies
6.
Magn Reson Med ; 85(3): 1468-1480, 2021 03.
Article in English | MEDLINE | ID: mdl-33090529

ABSTRACT

PURPOSE: To describe a new method for encoding chemical shift using asymmetric readout waveforms that enables more SNR-efficient fat/water imaging. METHODS: Chemical shift was encoded using asymmetric readout waveforms, rather than conventional shifted trapezoid readouts. Two asymmetric waveforms are described: a triangle and a spline. The concept was applied to a fat/water separated RARE sequence to increase sampling efficiency. The benefits were investigated through comparisons to shifted trapezoid readouts. Using asymmetric readout waveforms, the scan time was either shortened or maintained to increase SNR. A matched in-phase waveform is also described that aims to improve the SNR transfer function of the fat and water estimates. The sequence was demonstrated for cervical spine, musculoskeletal (MSK), and optic nerve applications at 3T and compared with conventional shifted readouts. RESULTS: By removing sequence dead times, scan times were shortened by 30% with maintained SNR. The shorter echo spacing also reduced T2 blurring. Maintaining the scan times and using asymmetric readout waveforms achieved an SNR improvement in agreement with the prolonged sampling duration. CONCLUSIONS: Asymmetric readout waveforms offer an additional degree of freedom in pulse sequence designs where chemical shift encoding is desired. This can be used to significantly shorten scan times or to increase SNR with maintained scan time.


Subject(s)
Magnetic Resonance Imaging , Optic Nerve
7.
Magn Reson Med ; 84(5): 2456-2468, 2020 11.
Article in English | MEDLINE | ID: mdl-32333472

ABSTRACT

PURPOSE: To investigate the impact of dual readout bandwidths (dBW) in a dual echo fat/water acquisition and describe a dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence where the concept is used to improve SNR by removing dead times between refocusing pulses and avoiding redundant Chemical-shift encoded. METHODS: Cramér-Rao bounds and Monte Carlo simulations were used to investigate a two-point fat/water model where the difference in bandwidths is incorporated. In vivo images were acquired at 1.5 and 3 T with the dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence. Typical bandwidth ratios were 1:2. SNR was compared with a single bandwidth sequence under identical scan parameters at 3T. RESULTS: Monte Carlo simulations and Cramér-Rao analysis demonstrate that number of signal averages can be improved with dual bandwidths compared to conventional single bandwidth acquisitions. The dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence can acquire images with high readout resolutions with well-conditioned sampling. An SNR improvement of 52% was measured, in line with the theoretical gain of 54%. CONCLUSIONS: The proposed dBW-rapid acquisition relaxation enhanced, or turbo spin echo sequence is a highly SNR-efficient two-point rapid acquisition relaxation enhanced, or turbo spin echo sequence without dead times, and can acquire images at higher resolutions than current vendor-supplied alternatives.


Subject(s)
Image Enhancement , Magnetic Resonance Imaging , Monte Carlo Method
8.
Magn Reson Med ; 84(3): 1441-1455, 2020 09.
Article in English | MEDLINE | ID: mdl-32112447

ABSTRACT

PURPOSE: To investigate the use of 3D EPI for rapid T1 -weighted brain imaging, focusing on the RF pulse's influence on the contrast between gray and white matter. METHODS: An interleaved 3D EPI sequence use partial Fourier and CAIPIRINHA sampling was used to acquire T1 -weighted brain volumes with isotropic resolution, low echo times, and low geometric distortions. Five different RF pulses were evaluated in terms of fat suppression performance and gray-white matter contrast. Two binomial RF pulses were compared to a single rectangular (WE-rect) RF pulse exciting only water, and two new RF pulses developed in this work, where one was an extension of the WE-rect, and the other was an SLR pulse. The technique was demonstrated in three clinical cases, where brain tumor patients were imaged before and after gadolinium administration. RESULTS: A fat-suppressed 3D EPI sequence with a phase encoding bandwidth of around 100 Hz was found to exhibit a good trade-off between geometrical distortions and scan duration. Whole-brain T1 -weighted 3D EPI images with 1.2 mm isotropic voxel size could be acquired in 24 seconds. The WE-rect, its extension, and the SLR RF pulses resulted in reduced magnetization transfer effects and provided a 20% mean increase in gray-white matter contrast. CONCLUSION: Using a high phase encoding bandwidth and RF pulses that reduce magnetization transfer effects, a fat-suppressed multi-shot 3D EPI sequence can be used to rapidly acquire isotropic T1 -weighted volumes.


Subject(s)
Brain Neoplasms , Echo-Planar Imaging , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Diagnostic Tests, Routine , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging
9.
Magn Reson Med ; 84(3): 1534-1542, 2020 09.
Article in English | MEDLINE | ID: mdl-32154955

ABSTRACT

PURPOSE: To develop a registration method that is capable of estimating the full range of rigid body motion from three orthogonal collapsed images of the head. These images can be obtained using the collapsed FatNav, a previously introduced navigator for prospective motion correction. It combines a short duration with wide compatibility with different main sequences due to its robustness against spin history effects. THEORY AND METHODS: A projection-based 3D/2D registration method is presented and then modified to take into account the peculiarities of the collapsed FatNav. Water/fat separated volumes were used in simulations to assess the accuracy of the proposed method at different resolutions by comparison with high-resolution 3D registration. The sensitivity with respect to masking strategies and starting motion parameters was investigated. Finally, prospective experiments with a healthy volunteer were performed with different types of motion patterns. A PROPELLER main sequence was chosen to compare the prospective correction with PROPELLER's own retrospective correction. RESULTS: In the simulations the proposed method has shown comparable performance to 3D registration. Furthermore, evidence of its robustness with respect to masking strategies and starting motion parameters was presented. The combination with collapsed FatNav has performed well in correcting most of the motion artifacts prospectively with improved image quality compared to only using PROPELLER's retrospective motion correction. CONCLUSIONS: The proposed 3D/2D registration together with collapsed FatNav is characterized by a good balance between navigator duration and estimate accuracy. Further work is needed to validate the method across a wider variety of subject anatomies.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Artifacts , Humans , Imaging, Three-Dimensional , Motion , Prospective Studies , Retrospective Studies
10.
Magn Reson Med ; 83(2): 653-661, 2020 02.
Article in English | MEDLINE | ID: mdl-31418932

ABSTRACT

PURPOSE: To develop reconstruction methods for improved image quality of chemical shift displacement-corrected fat/water imaging combined with partial Fourier acquisition. THEORY: Fat/water separation in k-space enables correction of chemical shift displacement. Modeling fat and water as real-valued rather than complex improves the conditionality of the inverse problem. This advantage becomes essential for k-space separation. In this work, it was described how to perform regularized fat/water imaging with real estimates in k-space, and how fat/water imaging can be combined with partial Fourier reconstruction using Projection Onto Convex Sets (POCS). METHODS: The reconstruction methods were demonstrated on chemical shift encoded gradient echo and fast spin echo data from volunteers, acquired at 1.5 T and 3 T. Both fully sampled and partial Fourier acquisitions were made. Data was retrospectively rejected from the fully sampled dataset to evaluate POCS and homodyne reconstruction. RESULTS: Fat/water separation in k-space eliminated chemical shift displacement, while real-valued estimates considerably reduced the noise amplification compared to complex estimates. POCS reconstruction could recover high spatial frequency information in the fat and water images with lower reconstruction error than homodyne. Partial Fourier in the readout direction enabled more flexible choice of gradient echo imaging parameters, in particular image resolution. CONCLUSION: Chemical shift displacement-corrected fat/water imaging can be performed with regularization and real-valued estimates to improve image quality by reducing ill-conditioning of the inverse problem in k-space. Fat/water imaging can be combined with POCS, which offers improved image quality over homodyne reconstruction.


Subject(s)
Adipose Tissue/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neuroimaging , Adipose Tissue/pathology , Algorithms , Artifacts , Brain/diagnostic imaging , Brain Mapping , Echo-Planar Imaging , Fourier Analysis , Healthy Volunteers , Humans , Image Enhancement/methods , Imaging, Three-Dimensional , Phantoms, Imaging , Retrospective Studies , Water
11.
Magn Reson Med ; 80(6): 2501-2513, 2018 12.
Article in English | MEDLINE | ID: mdl-29687921

ABSTRACT

PURPOSE: To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. METHODS: Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. RESULTS: Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. CONCLUSION: Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement.


Subject(s)
Adipose Tissue/diagnostic imaging , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Calibration , Humans , Image Enhancement/methods , Motion , Optic Nerve/diagnostic imaging , Signal-To-Noise Ratio , Software
12.
Magn Reson Med ; 80(2): 496-506, 2018 08.
Article in English | MEDLINE | ID: mdl-29266393

ABSTRACT

PURPOSE: Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. METHODS: A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. RESULTS: We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm3 resolution T2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. CONCLUSION: With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Humans , Phantoms, Imaging
13.
Magn Reson Med ; 79(6): 3045-3054, 2018 06.
Article in English | MEDLINE | ID: mdl-29090483

ABSTRACT

PURPOSE: A new multicontrast echo-planar imaging (EPI)-based sequence is proposed for brain MRI, which can directly generate six MR contrasts (T1 -FLAIR, T2 -w, diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T2*-w, T2 -FLAIR) in 1 min with full brain coverage. This could enable clinical MR clinical screening in similar time as a conventional CT exam but with more soft-tissue information. METHODS: Eleven sequence modules were created as dynamic building blocks for the sequence. Two EPI readout modules were reused throughout the sequence and were prepended by other modules to form the desired MR contrasts. Two scan protocols were optimized with scan times of 55-75 s. Motion experiments were carried out on two volunteers to investigate the robustness against head motion. Scans on patients were carried out and compared to conventional clinical images. RESULTS: The pulse sequence is found to be robust against motion given its single-shot nature of each contrast. For excessive out-of-plane head motion, the T1 -FLAIR and T2 -FLAIR contrasts suffer from incomplete inversion. Despite lower signal-to-noise ratio (SNR) and resolution, the 1-min multicontrast EPI data show promising correspondence with conventional diagnostic scans on patients. CONCLUSION: A 1 min multicontrast brain MRI scan based on EPI readouts has been presented in this feasibility study. Preliminary data show potential for clinical brain MRI use with minimal bore time for the patient. Such short examination time could be useful (e.g., for screening and acute stroke). The sequence may also help planning conventional brain MRI scans if run at the beginning of an examination. Magn Reson Med 79:3045-3054, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Echo-Planar Imaging , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Adult , Brain Neoplasms/diagnostic imaging , Contrast Media , Diffusion Magnetic Resonance Imaging , Glioblastoma/diagnostic imaging , Healthy Volunteers , Humans , Male , Middle Aged , Motion , Software , Tomography, X-Ray Computed
14.
Magn Reson Imaging ; 33(8): 984-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117701

ABSTRACT

PURPOSE: To acquire high-resolution 3D multi-slab echo planar imaging data without motion artifacts, using collapsed fat navigators. METHODS: A fat navigator module (collapsed FatNav) was added to a diffusion-weighted 3D multi-slab echo planar imaging (DW 3D-MS EPI) sequence, comprising three orthogonal echo planar imaging readouts to track rigid body head motion in the image domain and performing prospective motion correction. The stability, resolution and accuracy of the navigator were investigated on phantoms and healthy volunteers. RESULTS: The experiments on phantoms and volunteers show that the navigator, depicting projections of the subcutaneous fat in of the head, is capable of correcting for head motion with insignificant bias compared to motion estimates derived from the water-signaling DWI images. Despite that this projection technique implies a non-sparse image appearance, collapsed FatNav data could be highly accelerated with parallel imaging, allowing three orthogonal 2D EPI readouts in about 6ms. CONCLUSION: By utilizing signal from the leading fat saturation RF pulse of the diffusion sequence, only the readout portion of the navigator needs to be added, resulting in a scan time penalty of only about 5%. Motion can be detected and corrected for with a 5-10Hz update frequency when combined with a sequence like the DW 3D-MS EPI.


Subject(s)
Adipose Tissue/anatomy & histology , Artifacts , Brain/anatomy & histology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Diffusion Magnetic Resonance Imaging , Humans , Motion , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...