Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Article in English | MEDLINE | ID: mdl-38334166

ABSTRACT

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Subject(s)
Carbon Dioxide , Photosynthesis , Photosynthesis/physiology , Forests , Electron Transport , Plant Leaves
2.
New Phytol ; 242(2): 351-371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416367

ABSTRACT

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Subject(s)
Ecosystem , Plant Roots , Nitrogen , Forests , Soil , Plants , Water , Tropical Climate , Trees
4.
Ecol Evol ; 13(9): e10542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37732286

ABSTRACT

Experimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of Sphagnum mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on Sphagnum, but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on Sphagnum productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading. Four plots were covered with neutral density shade cloth to simulate shading from shrubs of 30%-90% reduction in light; one plot was left open. Growth of Sphagnum angustifolium/fallax and S. divinum declined linearly with increasing shade in hollows, but there was no response to shade on hummocks, where higher irradiance in the open plots may have been inhibitory. Shading caused etiolation of Sphagnum-they were thin and spindly under the deepest shade. A dense mat of shrub litter, corresponding to the amount of shrub litter produced in response to warming, did not inhibit Sphagnum growth or cause increases in potentially toxic base cations. CO2 exchange and chlorophyll-a fluorescence of S. angustifolium/fallax from the 30% and 90% shade cloth plots were measured in the laboratory. Light response curves indicate that maximal light saturated photosynthesis was 42% greater for S. angustifolium/fallax grown under 30% shade cloth relative to plants grown under 90% shade cloth. The response of Sphagnum growth in response to increasing shade is consistent with the hypothesis that increased shade resulting from shrub expansion in response to experimental warming contributed to reduced Sphagnum growth.

5.
Glob Chang Biol ; 29(12): 3256-3270, 2023 06.
Article in English | MEDLINE | ID: mdl-36994691

ABSTRACT

Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m-2 year-1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2 ). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.


Subject(s)
Carbon , Ecosystem , Wetlands , Biomass , Forests , Soil
6.
Glob Chang Biol ; 29(11): 3159-3176, 2023 06.
Article in English | MEDLINE | ID: mdl-36999440

ABSTRACT

Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2 -fixing (diazotrophic) and CH4 -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4 , CO2 ) and nitrogen (NH4 -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2 . Under ambient CO2 , warming increased plant-available NH4 -N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.


Subject(s)
Microbiota , Sphagnopsida , Nitrogen/analysis , Nitrogen Fixation , Soil , Carbon Dioxide , Oxidation-Reduction , Carbon , Microbiota/physiology , Methane
7.
Nat Commun ; 13(1): 5005, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008385

ABSTRACT

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Subject(s)
Forests , Phosphorus , Carbon , Photosynthesis , Plant Leaves/physiology , Trees/physiology
8.
Nat Ecol Evol ; 6(3): 315-323, 2022 03.
Article in English | MEDLINE | ID: mdl-35027723

ABSTRACT

Experiments show that elevated atmospheric CO2 (eCO2) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO2 enhancement is critical for projecting terrestrial responses to increasing atmospheric CO2 and climate change. Here, using data from 14 long-term ecosystem-scale CO2 experiments, we show that the eCO2 enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems. During wetter years, CO2 enhancement increases in woody ecosystems but declines in grass-dominated systems. Consistent with this difference, woody ecosystems can increase leaf area index in wetter years more effectively under eCO2 than can grassland ecosystems. Overall, and across different precipitation regimes, woody systems had markedly stronger CO2 enhancement (24%) than grasslands (13%). We developed an empirical relationship to quantify aboveground net primary productivity enhancement on the basis of changes in leaf area index, providing a new approach for evaluating eCO2 impacts on the productivity of terrestrial ecosystems.


Subject(s)
Ecosystem , Grassland , Carbon Dioxide , Photosynthesis , Water Supply
9.
Tree Physiol ; 42(5): 922-938, 2022 05 09.
Article in English | MEDLINE | ID: mdl-33907798

ABSTRACT

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from -0.003 to -0.065 µmol CO2 m-2 s-1 day-1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees.


Subject(s)
Ecosystem , Trees , Carbon Dioxide , Photosynthesis , Plant Leaves
10.
Tree Physiol ; 42(3): 428-440, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34387351

ABSTRACT

Canopy structure-the size and distribution of tree crowns and the spatial and temporal distribution of leaves within them-exerts dominant control over primary productivity, transpiration and energy exchange. Stand structure-the spatial arrangement of trees in the forest (height, basal area and spacing)-has a strong influence on forest growth, allocation and resource use. Forest response to elevated atmospheric CO2 is likely to be dependent on the canopy and stand structure. Here, we investigated elevated CO2 effects on the forest structure of a Liquidambar styraciflua L. stand in a free-air CO2 enrichment experiment, considering leaves, tree crowns, forest canopy and stand structure. During the 12-year experiment, the trees increased in height by 5 m and basal area increased by 37%. Basal area distribution among trees shifted from a relatively narrow distribution to a much broader one, but there was little evidence of a CO2 effect on height growth or basal area distribution. The differentiation into crown classes over time led to an increase in the number of unproductive intermediate and suppressed trees and to a greater concentration of stand basal area in the largest trees. A whole-tree harvest at the end of the experiment permitted detailed analysis of canopy structure. There was little effect of CO2 enrichment on the relative leaf area distribution within tree crowns and there was little change from 1998 to 2009. Leaf characteristics (leaf mass per unit area and nitrogen content) varied with crown depth; any effects of elevated CO2 were much smaller than the variation within the crown and were consistent throughout the crown. In this young, even-aged, monoculture plantation forest, there was little evidence that elevated CO2 accelerated tree and stand development, and there were remarkably small changes in canopy structure. Questions remain as to whether a more diverse, mixed species forest would respond similarly.


Subject(s)
Carbon Dioxide , Liquidambar , Carbon Dioxide/analysis , Forests , Liquidambar/physiology , Plant Leaves/physiology , Trees/physiology
11.
Glob Chang Biol ; 27(24): 6423-6435, 2021 12.
Article in English | MEDLINE | ID: mdl-34469626

ABSTRACT

Tropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m2 . Following Hurricanes Irma and María in September 2017, the infrared heater warming treatment was suspended for repairs, which allowed us to explore potential legacy effects of prior warming on forest recovery. We found that warming significantly reduced root production and root biomass over time. Following hurricane disturbance, both root biomass and production increased substantially across all plots; the root biomass increased 2.8-fold in controls but only 1.6-fold in previously warmed plots. This pattern held true for both herbaceous and woody roots, suggesting that the consistent antecedent warming conditions reduced root capacity to recover following hurricane disturbance. Root production and mortality were both related to soil ammonium nitrogen and microbial biomass nitrogen before and after the hurricanes. This experiment has provided an unprecedented look at the complex interactive effects of disturbance and climate change on the root component of a tropical forested ecosystem. A decrease in root production in a warmer world and slower root recovery after a major hurricane disturbance, as observed here, are likely to have longer-term consequences for tropical forest responses to future global change.


Subject(s)
Cyclonic Storms , Biomass , Climate Change , Ecosystem , Forests , Soil , Trees , Tropical Climate
12.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33674465

ABSTRACT

Zani et al (Research Articles, 27 November 2020, p. 1066) propose that enhancement of deciduous tree photosynthesis in a CO2-enriched atmosphere will advance autumn leaf senescence. This premise is not supported by consistent observations from free-air CO2 enrichment (FACE) experiments. In most FACE experiments, leaf senescence or abscission was not altered or was delayed in trees exposed to elevated CO2.


Subject(s)
Plant Leaves , Trees , Photosynthesis , Seasons
13.
Ecol Evol ; 11(3): 1150-1164, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598120

ABSTRACT

Large areas of highly productive tropical forests occur on weathered soils with low concentrations of available phosphorus (P). In such forests, root and microbial production of acid phosphatase enzymes capable of mineralizing organic phosphorus is considered vital to increasing available P for plant uptake.We measured both root and soil phosphatase throughout depth and alongside a variety of root and soil factors to better understand the potential of roots and soil biota to increase P availability and to constrain estimates of the biochemical mineralization within ecosystem models.We measured soil phosphatase down to 1 m, root phosphatase to 30 cm, and collected data on fine-root mass density, specific root length, soil P, bulk density, and soil texture using soil cores in four tropical forests within the Luquillo Experimental Forest in Puerto Rico.We found that soil phosphatase decreased with soil depth, but not root phosphatase. Furthermore, when both soil and root phosphatase were expressed per soil volume, soil phosphatase was 100-fold higher that root phosphatase.Both root and soil factors influenced soil and root phosphatase. Soil phosphatase increased with fine-root mass density and organic P, which together explained over 50% of the variation in soil phosphatase. Over 80% of the variation in root phosphatase per unit root mass was attributed to specific root length (positive correlation) and available (resin) P (negative correlation). Synthesis: Fine-root traits and soil P data are necessary to understand and represent soil and root phosphatase activity throughout the soil column and across sites with different soil conditions and tree species. These findings can be used to parameterize or benchmark estimates of biochemical mineralization in ecosystem models that contain fine-root biomass and soil P distributions throughout depth.

14.
Plant Soil ; 466: 649-674, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-36267144

ABSTRACT

Aims: Slow decomposition and isolation from groundwater mean that ombrotrophic peatlands store a large amount of soil carbon (C) but have low availability of nitrogen (N) and phosphorus (P). To better understand the role these limiting nutrients play in determining the C balance of peatland ecosystems, we compile comprehensive N and P budgets for a forested bog in northern Minnesota, USA. Methods: N and P within plants, soils, and water are quantified based on field measurements. The resulting empirical dataset are then compared to modern-day, site-level simulations from the peatland land surface version of the Energy Exascale Earth System Model (ELM-SPRUCE). Results: Our results reveal N is accumulating in the ecosystem at 0.2 ± 0.1 g N m-2 year-1 but annual P inputs to this ecosystem are balanced by losses. Biomass stoichiometry indicates that plant functional types differ in N versus P limitation, with trees exhibiting a stronger N limitation than ericaceous shrubs or Sphagnum moss. High biomass and productivity of Sphagnum results in the moss layer storing and cycling a large proportion of plant N and P. Comparing our empirically-derived nutrient budgets to ELM-SPRUCE shows the model captures N cycling within dominant plant functional types well. Conclusions: The nutrient budgets and stoichiometry presented serve as a baseline for quantifying the nutrient cycling response of peatland ecosystems to both observed and simulated climate change. Our analysis improves our understanding of N and P dynamics within nutrient-limited peatlands and represents a crucial step toward improving C-cycle projections into the twenty-first century.

15.
New Phytol ; 229(5): 2413-2445, 2021 03.
Article in English | MEDLINE | ID: mdl-32789857

ABSTRACT

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Subject(s)
Carbon Sequestration , Ecosystem , Atmosphere , Carbon Cycle , Carbon Dioxide , Climate Change
16.
Plant Environ Interact ; 1(1): 3-16, 2020 Jun.
Article in English | MEDLINE | ID: mdl-37284129

ABSTRACT

A common assumption in tropical ecology is that root systems respond rapidly to climatic cues but that most of that response is limited to the uppermost layer of the soil, with relatively limited changes in deeper layers. However, this assumption has not been tested directly, preventing models from accurately predicting the response of tropical forests to environmental change.We measured seasonal dynamics of fine roots in an upper-slope plateau in Central Amazonia mature forest using minirhizotrons to 90 cm depth, which were calibrated with fine roots extracted from soil cores.Root productivity and mortality in surface soil layers were positively correlated with precipitation, whereas root standing length was greater during the dry periods at the deeper layers. Contrary to historical assumptions, a large fraction of fine-root standing biomass (46%) and productivity (41%) was found in soil layers deeper than 30 cm. Furthermore, root turnover decreased linearly with soil depth.Our findings demonstrate a relationship between fine-root dynamics and precipitation regimes in Central Amazonia. Our results also emphasize the importance of deeper roots for accurate estimates of primary productivity and the interaction between roots and carbon, water, and nutrients.

17.
Ecol Evol ; 9(22): 12571-12585, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788198

ABSTRACT

Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8-m-diameter plots were exposed to a range of whole-ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co-occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13-29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow-on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.

18.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Article in English | MEDLINE | ID: mdl-31427733

ABSTRACT

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Subject(s)
Carbon Cycle , Ecosystem , Carbon , China , Europe
19.
Nat Commun ; 10(1): 454, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765702

ABSTRACT

Increasing atmospheric CO2 stimulates photosynthesis which can increase net primary production (NPP), but at longer timescales may not necessarily increase plant biomass. Here we analyse the four decade-long CO2-enrichment experiments in woody ecosystems that measured total NPP and biomass. CO2 enrichment increased biomass increment by 1.05 ± 0.26 kg C m-2 over a full decade, a 29.1 ± 11.7% stimulation of biomass gain in these early-secondary-succession temperate ecosystems. This response is predictable by combining the CO2 response of NPP (0.16 ± 0.03 kg C m-2 y-1) and the CO2-independent, linear slope between biomass increment and cumulative NPP (0.55 ± 0.17). An ensemble of terrestrial ecosystem models fail to predict both terms correctly. Allocation to wood was a driver of across-site, and across-model, response variability and together with CO2-independence of biomass retention highlights the value of understanding drivers of wood allocation under ambient conditions to correctly interpret and predict CO2 responses.


Subject(s)
Carbon Dioxide/analysis , Trees/metabolism , Biomass , Carbon Dioxide/metabolism , Climate , Ecosystem , Photosynthesis , Trees/growth & development , Wood/growth & development
20.
PeerJ ; 6: e5356, 2018.
Article in English | MEDLINE | ID: mdl-30065895

ABSTRACT

Most experimental studies measuring the effects of climate change on terrestrial C cycling have focused on processes that occur at relatively short time scales (up to a few years). However, climate-soil C interactions are influenced over much longer time scales by bioturbation and soil weathering affecting soil fertility, ecosystem productivity, and C storage. Elevated CO2can increase belowground C inputs and stimulate soil biota, potentially affecting bioturbation, and can decrease soil pH which could accelerate soil weathering rates. To determine whether we could resolve any changes in bioturbation or C storage, we investigated soil profiles collected from ambient and elevated-CO2plots at the Free-Air Carbon-Dioxide Enrichment (FACE) forest site at Oak Ridge National Laboratory after 11 years of 13C-depleted CO2 release. Profiles of organic carbon concentration, δ13C values, and activities of 137Cs, 210Pb, and 226Ra were measured to ∼30 cm depth in replicated soil cores to evaluate the effects of elevated CO2 on these parameters. Bioturbation models based on fitting advection-diffusion equations to 137Cs and 210Pb profiles showed that ambient and elevated-CO2 plots had indistinguishable ranges of apparent biodiffusion constants, advection rates, and soil mixing times, although apparent biodiffusion constants and advection rates were larger for 137Cs than for 210Pb as is generally observed in soils. Temporal changes in profiles of δ13C values of soil organic carbon (SOC) suggest that addition of new SOC at depth was occurring at a faster rate than that implied by the net advection term of the bioturbation model. Ratios of (210Pb/226Ra) may indicate apparent soil mixing cells that are consistent with biological mechanisms, possibly earthworms and root proliferation, driving C addition and the mixing of soil between ∼4 cm and ∼18 cm depth. Burial of SOC by soil mixing processes could substantially increase the net long-term storage of soil C and should be incorporated in soil-atmosphere interaction models.

SELECTION OF CITATIONS
SEARCH DETAIL
...