Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(10): 3806-11, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23431194

ABSTRACT

Prostaglandin E2 (PGE2) is a key mediator in inflammatory response. The main source of inducible PGE2, microsomal PGE2 synthase-1 (mPGES-1), has emerged as an interesting drug target for treatment of pain. To support inhibitor design, we have determined the crystal structure of human mPGES-1 to 1.2 Å resolution. The structure reveals three well-defined active site cavities within the membrane-spanning region in each monomer interface of the trimeric structure. An important determinant of the active site cavity is a small cytosolic domain inserted between transmembrane helices I and II. This extra domain is not observed in other structures of proteins within the MAPEG (Membrane-Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily but is likely to be present also in microsomal GST-1 based on sequence similarity. An unexpected feature of the structure is a 16-Å-deep cone-shaped cavity extending from the cytosolic side into the membrane-spanning region. We suggest a potential role for this cavity in substrate access. Based on the structure of the active site, we propose a catalytic mechanism in which serine 127 plays a key role. We have also determined the structure of mPGES-1 in complex with a glutathione-based analog, providing insight into mPGES-1 flexibility and potential for structure-based drug design.


Subject(s)
Intramolecular Oxidoreductases/chemistry , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacology , Glutathione/analogs & derivatives , Glutathione/chemistry , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/genetics , Microsomes/enzymology , Models, Molecular , Molecular Sequence Data , Prostaglandin-E Synthases , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid
2.
J Biomol Screen ; 17(10): 1372-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22895459

ABSTRACT

UNLABELLED: Microsomal prostaglandin E synthase-1 (mPGES-1) is the major enzyme catalyzing the isomerization of prostaglandin (PG) H(2) to PGE(2). Here we report the development of a robust and practical automated assay in a 384-well format for room temperature screening of mPGES-1 inhibitors with high precision and low reagent consumption. The assay should enable precise structure-activity relationship development. It uses acetonitrile as solvent for PGH(2), FeCl(2)/citrate as stop reagent, and a short reaction time. Combined with high-precision liquid transfer and extensive mixing after addition of reactants, these properties let the assay reach Z' > 0.7 and high reproducibility of inhibitor IC(50) values. Thorough investigation of the quality of mixing in all liquid transfer steps proved crucial for reaching high-precision performance. ABBREVIATIONS: mPGES-1 (microsomal prostaglandin E synthase-1); FRET (fluorescence resonance energy transfer); HTRF (homogeneous time-resolved fluorescence); PGH2 (prostaglandin H2); PGE2 (prostaglandin E2); SAR (structure-activity relationship); COX-2 (cyclooxygenase-2); GSH (glutathione); ALP (automated labware positioner).


Subject(s)
Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Intramolecular Oxidoreductases/antagonists & inhibitors , Animals , Cell Line , Enzyme Activation/drug effects , Humans , Kinetics , Prostaglandin-E Synthases , Reproducibility of Results , Robotics , Temperature
3.
J Biol Chem ; 287(15): 11810-9, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22334705

ABSTRACT

γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-ß (Aß) peptides. The Aß42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aß production by targeting the APP. Here, we describe novel GSMs that are selective for Aß modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aß both in cell and cell-free systems as well as lower amyloidogenic Aß42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aß modulation and have a different mechanism of action compared with the original class of GSMs described.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/metabolism , Azepines/pharmacology , Protein Processing, Post-Translational/drug effects , Pyrans/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Azepines/chemistry , Binding, Competitive , Brain/drug effects , Brain/metabolism , Carbamates/pharmacology , Cell-Free System , Dibenzazepines/pharmacology , Dipeptides/pharmacology , Drug Interactions , Female , Flurbiprofen/pharmacology , Guinea Pigs , HEK293 Cells , Humans , Imidazoles/pharmacology , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Protein Binding , Pyrans/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Rats , Receptor, EphA4/metabolism , Receptor, EphB2/metabolism , Receptors, Notch/metabolism , Sulfonamides/pharmacology , Sulindac/analogs & derivatives , Sulindac/pharmacology
4.
Prep Biochem Biotechnol ; 32(2): 157-72, 2002 May.
Article in English | MEDLINE | ID: mdl-12071646

ABSTRACT

The dut gene, which encodes Escherichia coli deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), has been recloned to increase overexpression of the enzyme and to enable simplification of the purification protocol into a one-step procedure. The gene was cloned into the vector pET-3a and expressed in E. coli BL21(DE3) pLysS under the control of a bacteriophage T7 promotor. Induction results in production of dUTPase corresponding to 60% of the extracted protein. Phosphocellulose chromatography at low pH was utilised for one-step purification, resulting in a homogenous preparation of the recombinant protein with a highly specific activity. The yield of purified enzyme is 500 mg per litre of bacterial culture, a significant increase compared to previously employed methods.


Subject(s)
Escherichia coli/enzymology , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Base Sequence , Calibration , Cloning, Molecular , DNA Primers , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Genetic Vectors , Kinetics , Molecular Weight , Plasmids , Polymerase Chain Reaction , Pyrophosphatases/isolation & purification , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...