Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(3): 3026-3037, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770910

ABSTRACT

Propagating surface plasmon waves have been used for many applications including imaging and sensing. However, direct in-plane imaging of micro-objects with surface plasmon waves suffers from the lack of simple, two-dimensional lenses, mirrors, and other optical elements. In this paper, we apply lensless digital holographic techniques and leakage radiation microscopy to achieve in-plane surface imaging with propagating surface plasmon waves. As plasmons propagate in two-dimensions and scatter from various objects, a hologram is formed over the surface. Iterative phase retrieval techniques applied to this hologram remove twin image interference for high-resolution in-plane imaging and enable further applications in real-time plasmonic phase sensing.

2.
Appl Spectrosc ; 74(11): 1398-1406, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32677843

ABSTRACT

The observation of single molecule events using surface-enhanced Raman scattering (SERS) is a well-established phenomenon. These events are characterized by strong fluctuations in SERS intensities. High-speed SERS intensity fluctuations (in the microsecond time scale) have been reported for experiments involving single metallic particles. In this work, the high-speed SERS behavior of six different types of nanostructured metal systems (Ag nanoshells, Ag nanostars, Ag aggregated spheres, Au aggregated spheres, particle-on-mirror, and Ag deposited on microspheres) was investigated. All systems demonstrated high-speed SERS intensity fluctuations. Statistical analysis of the duration of the SERS fluctuations yielded tailed distributions with average event durations around 100 µs. Although the characteristics of the fluctuations seem to be random, the results suggest interesting differences between the system that might be associated with the strength distribution and density of the localized SERS hotspots. For instance, systems with more localized fields, such as nanostars, present faster fluctuation bursts compared to metallic aggregates that support spread-out fields. The results presented here appear to confirm that high-speed SERS intensity fluctuations are a fundamental characteristic of the SERS effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...