Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1994): 20222140, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36883279

ABSTRACT

Mitochondria and plastids rely on many nuclear-encoded genes, but retain small subsets of the genes they need to function in their own organelle DNA (oDNA). Different species retain different numbers of oDNA genes, and the reasons for these differences are not completely understood. Here, we use a mathematical model to explore the hypothesis that the energetic demands imposed by an organism's changing environment influence how many oDNA genes it retains. The model couples the physical biology of cell processes of gene expression and transport to a supply-and-demand model for the environmental dynamics to which an organism is exposed. The trade-off between fulfilling metabolic and bioenergetic environmental demands, and retaining genetic integrity, is quantified for a generic gene encoded either in oDNA or in nuclear DNA. Species in environments with high-amplitude, intermediate-frequency oscillations are predicted to retain the most organelle genes, whereas those in less dynamic or noisy environments the fewest. We discuss support for, and insight from, these predictions with oDNA data across eukaryotic taxa, including high oDNA gene counts in sessile organisms exposed to day-night and intertidal oscillations (including plants and algae) and low counts in parasites and fungi.


Subject(s)
Eukaryotic Cells , Mitochondria , Species Specificity , Eukaryota
2.
PLoS Comput Biol ; 15(6): e1007073, 2019 06.
Article in English | MEDLINE | ID: mdl-31237876

ABSTRACT

A large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency. As a remedy, we propose a scale invariant mathematical framework for simulating whole brain perfusion. The suggested framework is based on a segmentation of anatomical geometry down to imaging voxel resolution. Large vessels in the arterial and venous network are identified from time-of-flight (ToF) and quantitative susceptibility mapping (QSM). Macro-scale flow in the large-vessel-network is accurately modelled using the Hagen-Poiseuille equation, whereas capillary flow is treated as two-compartment porous media flow. Macro-scale flow is coupled with micro-scale flow by a spatially distributing support function in the terminal endings. Perfusion is defined as the transition of fluid from the arterial to the venous compartment. We demonstrate a whole brain simulation of tracer propagation on a realistic geometric model of the human brain, where the model comprises distinct areas of grey and white matter, as well as large vessels in the arterial and venous vascular network. Our proposed framework is an accurate and viable alternative to traditional compartment models, with high relevance for simulation of brain perfusion and also for restoration of field parameters in clinical brain perfusion applications.


Subject(s)
Brain , Cerebrovascular Circulation/physiology , Computational Biology/methods , Magnetic Resonance Imaging/methods , Models, Cardiovascular , Adult , Algorithms , Brain/blood supply , Brain/diagnostic imaging , Computer Simulation , Humans , Male , Perfusion
3.
IEEE Trans Biomed Eng ; 66(6): 1779-1790, 2019 06.
Article in English | MEDLINE | ID: mdl-30403617

ABSTRACT

OBJECTIVE: Chronic kidney disease (CKD) is a serious medical condition characterized by gradual loss of kidney function. Early detection and diagnosis is mandatory for adequate therapy and prognostic improvement. Hence, in the current pilot study we explore the use of image registration methods for detecting renal morphologic changes in patients with CKD. METHODS: Ten healthy volunteers and nine patients with presumed CKD underwent dynamic T1 weighted imaging without contrast agent. From real and simulated dynamic time series, kidney deformation fields were estimated using a poroelastic deformation model. From the deformation fields several quantitative parameters reflecting pressure gradients, and volumetric and shear deformations were computed. Eight of the patients also underwent a kidney biopsy as a gold standard. RESULTS: We found that the absolute deformation, normalized volume changes, as well as pressure gradients correlated significantly with arteriosclerosis from biopsy assessments. Furthermore, our results indicate that current image registration methodologies are lacking sensitivity to recover mild changes in tissue stiffness. CONCLUSION: Image registration applied to dynamic time series correlated with structural renal changes and should be further explored as a tool for invasive measurements of arteriosclerosis. SIGNIFICANCE: Under the assumption that the proposed framework can be further developed in terms of sensitivity and specificity, it can provide clinicians with a non-invasive tool of high spatial coverage available for characterization of arteriosclerosis and potentially other pathological changes observed in chronic kidney disease.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Kidney/diagnostic imaging , Magnetic Resonance Imaging/methods , Renal Insufficiency, Chronic/diagnostic imaging , Adult , Aged , Aged, 80 and over , Algorithms , Biopsy , Elasticity/physiology , Female , Humans , Kidney/pathology , Kidney/physiopathology , Male , Middle Aged , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/physiopathology , Young Adult
4.
Proc Natl Acad Sci U S A ; 115(4): 750-755, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311333

ABSTRACT

In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: (i) ecologically driven change, (ii) evolutionarily driven change, and (iii) environmentally driven change.


Subject(s)
Biological Evolution , Ecology/methods , Population Dynamics/statistics & numerical data , Biodiversity , Ecosystem , Environment , Models, Theoretical , Phenotype , Selection, Genetic/physiology
5.
IEEE Trans Biomed Eng ; 63(10): 2200-10, 2016 10.
Article in English | MEDLINE | ID: mdl-26742122

ABSTRACT

OBJECTIVE: Medical image registration can be formulated as a tissue deformation problem, where parameter estimation methods are used to obtain the inverse deformation. However, there is limited knowledge about the ability to recover an unknown deformation. The main objective of this study is to estimate the quality of a restored deformation field obtained from image registration of dynamic MR sequences. METHODS: We investigate the behavior of forward deformation models of various complexities. Further, we study the accuracy of restored inverse deformations generated by image registration. RESULTS: We found that the choice of 1) heterogeneous tissue parameters and 2) a poroelastic (instead of elastic) model had significant impact on the forward deformation. In the image registration problem, both 1) and 2) were found not to be significant. Here, the presence of image features were dominating the performance. We also found that existing algorithms will align images with high precision while at the same time obtain a deformation field with a relative error of 40%. CONCLUSION: Image registration can only moderately well restore the true deformation field. Still, estimation of volume changes instead of deformation fields can be fairly accurate and may represent a proxy for variations in tissue characteristics. Volume changes remain essentially unchanged under choice of discretization and the prevalence of pronounced image features. SIGNIFICANCE: We suggest that image registration of high-contrast MR images has potential to be used as a tool to produce imaging biomarkers sensitive to pathology affecting tissue stiffness.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Models, Biological , Phantoms, Imaging , Algorithms , Elasticity , Humans
6.
Ground Water ; 47(5): 627-38, 2009.
Article in English | MEDLINE | ID: mdl-19563425

ABSTRACT

The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.


Subject(s)
Carbon Dioxide/analysis , Models, Theoretical , Environmental Monitoring
7.
Environ Sci Technol ; 43(3): 743-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19245011

ABSTRACT

Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.


Subject(s)
Carbon Dioxide/chemistry , Geology , Models, Theoretical , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...