Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628776

ABSTRACT

Serum response factor (SRF) controls the expression of muscle contraction and motility genes in mural cells (MCs) of the vasculature. In the retina, MC-SRF is important for correct angiogenesis during development and the continuing maintenance of the vascular tone. The purpose of this study was to provide further insights into the effects of MC SRF deficiency on the vasculature and function of the mature retina in SrfiMCKO mice that carry a MC-specific deletion of Srf. Retinal morphology and vascular integrity were analyzed in vivo via scanning laser ophthalmoscopy (SLO), angiography, and optical coherence tomography (OCT). Retinal function was evaluated with full-field electroretinography (ERG). We found that retinal blood vessels of these mutants exhibited different degrees of morphological and functional alterations. With increasing severity, we found vascular bulging, the formation of arteriovenous (AV) anastomoses, and ultimately, a retinal detachment (RD). The associated irregular retinal blood pressure and flow distribution eventually induced hypoxia, indicated by a negative ERG waveform shape. Further, the high frequency of interocular differences in the phenotype of individual SrfiMCKO mice points to a secondary nature of these developments far downstream of the genetic defect and rather dependent on the local retinal context.


Subject(s)
Retinal Detachment , Serum Response Factor , Animals , Mice , Serum Response Factor/genetics , Retina , Retinal Vessels , Angiography
2.
J Am Heart Assoc ; 12(17): e031044, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37609982

ABSTRACT

Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood-brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood-brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age-associated changes in gene expression. The study reveals age-dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood-brain barrier and vascular integrity. We also investigated age-dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age-dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age-dependent downregulation of the Aplnr gene along with age-dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood-brain barrier and vascular integrity.


Subject(s)
Endothelial Cells , Stroke , Humans , Animals , Mice , Apelin Receptors , Transcriptome , Cerebral Hemorrhage/genetics , Chromatin , Epigenesis, Genetic
3.
Circ Res ; 131(4): 308-327, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35862101

ABSTRACT

BACKGROUND: Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts. METHODS: We generated a mouse model of MC-specific inducible Srf gene deletion and studied its consequences during retinal angiogenesis using RNA-sequencing, immunohistology, in vivo live imaging, and in vitro techniques. RESULTS: By postnatal day 6, pericytes lacking SRF were morphologically abnormal and failed to properly comigrate with angiogenic sprouts. As a consequence, pericyte-deficient vessels at the retinal sprouting front became dilated and leaky. By postnatal day 12, also the vascular smooth muscle cells had lost SRF, which coincided with the formation of pathological arteriovenous shunts. Mechanistically, we show that PDGFB-dependent SRF activation is mediated via MRTF (myocardin-related transcription factor) cofactors. We further show that MRTF-SRF signaling promotes pathological pericyte activation during ischemic retinopathy. RNA-sequencing, immunohistology, in vivo live imaging, and in vitro experiments demonstrated that SRF regulates expression of contractile SMC proteins essential to maintain the vascular tone. CONCLUSIONS: SRF is crucial for distinct functions in pericytes and vascular smooth muscle cells. SRF directs pericyte migration downstream of PDGFRB signaling and mediates pathological pericyte activation during ischemic retinopathy. In vascular smooth muscle cells, SRF is essential for expression of the contractile machinery, and its deletion triggers formation of arteriovenous shunts. These essential roles in physiological and pathological contexts provide a rationale for novel therapeutic approaches through targeting SRF activity in MCs.


Subject(s)
Pericytes , Retinal Diseases , Animals , Mice , Pericytes/metabolism , Proto-Oncogene Proteins c-sis/metabolism , RNA/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Diseases/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism
4.
BMC Bioinformatics ; 23(1): 139, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35439941

ABSTRACT

BACKGROUND: With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. RESULTS: We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. CONCLUSION: The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.


Subject(s)
Algorithms , Software , Bias , Humans , Models, Statistical
5.
Cancers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429878

ABSTRACT

Different molecular mechanisms support the overexpression of the mouse double minute homolog 4 (MDM4), a functional p53 inhibitor, in human hepatocellular carcinoma (HCC). However, the transcription factors (TFs) leading to its transcriptional upregulation remain unknown. Following promoter and gene expression analyses, putative TFs were investigated using gene-specific siRNAs, cDNAs, luciferase reporter assays, chromatin immunoprecipitation, and XI-011 drug treatment in vitro. Additionally, MDM4 expression was investigated in SRF-VP16iHep transgenic mice. We observed a copy-number-independent upregulation of MDM4 in human HCCs. Serum response factor (SRF), ELK1 and ELK4 were identified as TFs activating MDM4 transcription. While SRF was constitutively detected in TF complexes at the MDM4 promoter, presence of ELK1 and ELK4 was cell-type dependent. Furthermore, MDM4 was upregulated in SRF-VP16-driven murine liver tumors. The pharmacological inhibitor XI-011 exhibited anti-MDM4 activity by downregulating the TFs driving MDM4 transcription, which decreased HCC cell viability and increased apoptosis. In conclusion, SRF drives transcriptional MDM4 upregulation in HCC, acting in concert with either ELK1 or ELK4. The transcriptional regulation of MDM4 may be a promising target for precision oncology of human HCC, as XI-011 treatment exerts anti-MDM4 activity independent from the MDM4 copy number and the p53 status.

6.
Proc Natl Acad Sci U S A ; 117(1): 454-463, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871210

ABSTRACT

Liver fibrosis interferes with normal liver function and facilitates hepatocellular carcinoma (HCC) development, representing a major threat to human health. Here, we present a comprehensive perspective of microRNA (miRNA) function on targeting the fibrotic microenvironment. Starting from a murine HCC model, we identify a miRNA network composed of 8 miRNA hubs and 54 target genes. We show that let-7, miR-30, miR-29c, miR-335, and miR-338 (collectively termed antifibrotic microRNAs [AF-miRNAs]) down-regulate key structural, signaling, and remodeling components of the extracellular matrix. During fibrogenic transition, these miRNAs are transcriptionally regulated by the transcription factor Pparγ and thus we identify a role of Pparγ as regulator of a functionally related class of AF-miRNAs. The miRNA network is active in human HCC, breast, and lung carcinomas, as well as in 2 independent mouse liver fibrosis models. Therefore, we identify a miRNA:mRNA network that contributes to formation of fibrosis in tumorous and nontumorous organs of mice and humans.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , MicroRNAs/genetics , PPAR gamma/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , CpG Islands/genetics , DNA Methylation , Datasets as Topic , Disease Models, Animal , Epigenesis, Genetic , Extracellular Matrix/pathology , Female , Hepatic Stellate Cells/pathology , Humans , Liver/cytology , Liver/pathology , Liver Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA-Seq , Tumor Microenvironment/genetics
7.
Int J Biochem Cell Biol ; 120: 105668, 2020 03.
Article in English | MEDLINE | ID: mdl-31877385

ABSTRACT

ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvß6 integrin expression. αvß6 integrins activate the profibrotic cytokine Transforming Growth Factor ß1 (TGFß1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvß6 mediated TGFß activation has been implicated. Here we identify that Elk1-knockout (Elk1-/0) mice aged to one year developed spontaneous fibrosis in the absence of injury in both the lung and the liver but not in the heart or kidneys. The lungs of Elk1-/0 aged mice demonstrated increased collagen deposition, in particular collagen 3α1, located in small fibrotic foci and thickened alveolar walls. Despite the liver having relatively low global levels of ELK1 expression, Elk1-/0 animals developed hepatosteatosis and fibrosis. The loss of Elk1 also had differential effects on Itgb1, Itgb5 and Itgb6 expression in the four organs potentially explaining the phenotypic differences in these organs. To understand the potential causes of reduced ELK1 in human disease we exposed human lung epithelial cells and murine lung slices to cigarette smoke extract, which lead to reduced ELK1 expression andmay explain the loss of ELK1 in human disease. These data support a fundamental role for ELK1 in protecting against the development of progressive fibrosis via transcriptional regulation of beta integrin subunit genes, and demonstrate that loss of ELK1 can be caused by cigarette smoke.


Subject(s)
Bronchi/pathology , Lung/pathology , ets-Domain Protein Elk-1/deficiency , Age Factors , Animals , Bronchi/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Humans , Lung/metabolism , Male , Mice , Mice, Knockout , ets-Domain Protein Elk-1/metabolism
8.
Cancers (Basel) ; 12(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861875

ABSTRACT

K-Ras is the most prominent driver of oncogenesis and no effective K-Ras inhibitors have been established despite decades of intensive research. Identifying new K-Ras-binding proteins and their interaction domains offers the opportunity for defining new approaches in tackling oncogenic K-Ras. We have identified Galectin-8 as a novel, direct binding protein for K-Ras4B by mass spectrometry analyses and protein interaction studies. Galectin-8 is a tandem-repeat Galectin and it is widely expressed in lung and pancreatic carcinoma cells. siRNA-mediated depletion of Galectin-8 resulted in increased K-Ras4B content and ERK1/2 activity in lung and pancreatic carcinoma cells. Moreover, cell migration and cell proliferation were inhibited by the depletion of Galectin-8. The K-Ras4B-Galectin-8 interaction is indispensably associated with the farnesylation of K-Ras4B. The lysine-rich polybasic domain (PBD), a region that is unique for K-Ras4B as compared to H- and N-Ras, stabilizes the interaction and accounts for the specificity. Binding assays with the deletion mutants of Galectin-8, comprising either of the two carbohydrate recognition domains (CRD), revealed that K-Ras4B only interacts with the N-CRD, but not with the C-CRD. Structural modeling uncovers a potential binding pocket for the hydrophobic farnesyl chain of K-Ras4B and a cluster of negatively charged amino acids for interaction with the positively charged lysine residues in the N-CRD. Our results demonstrate that Galectin-8 is a new binding partner for K-Ras4B and it interacts via the N-CRD with the farnesylated PBD of K-Ras, thereby modulating the K-Ras effector pathways as well as cell proliferation and migration.

9.
Brain ; 140(9): 2444-2459, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050400

ABSTRACT

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the Parkinson's disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson's disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson's disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson's disease and provide new prospects for targeted therapies.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Metformin/therapeutic use , Mitochondria/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Case-Control Studies , Cells, Cultured , Fibroblasts/metabolism , HSP90 Heat-Shock Proteins/biosynthesis , High-Temperature Requirement A Serine Peptidase 2 , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation , NAD/metabolism , Organelle Biogenesis , Oxygen Consumption , Parkinson Disease/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Serine Endopeptidases/metabolism
10.
Neuroimage ; 155: 245-256, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28473286

ABSTRACT

The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models. Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry. Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression. For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Intracranial Hemorrhages/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Prodromal Symptoms , Stroke/diagnosis , Animals , Disease Models, Animal , Male , Mice , Mice, Transgenic
12.
J Biol Chem ; 291(18): 9540-53, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26861876

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with high mortality. Active TGFß1 is considered central to the pathogenesis of IPF. A major mechanism of TGFß1 activation in the lung involves the epithelially restricted αvß6 integrin. Expression of the αvß6 integrin is dramatically increased in IPF. How αvß6 integrin expression is regulated in the pulmonary epithelium is unknown. Here we identify a region in the ß6 subunit gene (ITGB6) promoter acting to markedly repress basal gene transcription, which responds to both the Ets domain-containing protein Elk1 (Elk1) and the glucocorticoid receptor (GR). Both Elk1 and GR can regulate αvß6 integrin expression in vitro We demonstrate Elk1 binding to the ITGB6 promoter basally and that manipulation of Elk1 or Elk1 binding alters ITGB6 promoter activity, gene transcription, and αvß6 integrin expression. Crucially, we find that loss of Elk1 causes enhanced Itgb6 expression and exaggerated lung fibrosis in an in vivo model of fibrosis, whereas the GR agonist dexamethasone inhibits Itgb6 expression. Moreover, Elk1 dysregulation is present in epithelium from patients with IPF. These data reveal a novel role for Elk1 regulating ITGB6 expression and highlight how dysregulation of Elk1 can contribute to human disease.


Subject(s)
Antigens, Neoplasm/biosynthesis , Gene Expression Regulation , Integrins/biosynthesis , Pulmonary Fibrosis/metabolism , Signal Transduction , Transcription, Genetic , ets-Domain Protein Elk-1/metabolism , Animals , Antigens, Neoplasm/genetics , Cell Line, Transformed , Humans , Integrins/genetics , Mice , Mice, Knockout , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , ets-Domain Protein Elk-1/genetics
13.
Oncotarget ; 6(34): 35922-30, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26416425

ABSTRACT

Recent reports suggested frequent occurrence of cancer associated somatic mutations within regulatory elements of the genome. Based on initial exome sequencing of 21 melanomas, we report frequent somatic mutations in skin cancers in a bidirectional promoter of diphthamide biosynthesis 3 (DPH3) and oxidoreductase NAD-binding domain containing 1 (OXNAD1) genes. The UV-signature mutations occurred at sites adjacent and within a binding motif for E-twenty six/ternary complex factors (Ets/TCF), at -8 and -9 bp from DPH3 transcription start site. Follow up screening of 586 different skin lesions showed that the DPH3 promoter mutations were present in melanocytic nevi (2/114; 2%), melanoma (30/304; 10%), basal cell carcinoma of skin (BCC; 57/137; 42%) and squamous cell carcinoma of skin (SCC; 12/31; 39%). Reporter assays carried out in one melanoma cell line for DPH3 and OXNAD1 orientations showed statistically significant increased promoter activity due to -8/-9CC > TT tandem mutations; although, no effect of the mutations on DPH3 and OXNAD1 transcription in tumors was observed. The results from this study show occurrence of frequent somatic non-coding mutations adjacent to a pre-existing binding site for Ets transcription factors within the directional promoter of DPH3 and OXNAD1 genes in three major skin cancers. The detected mutations displayed typical UV signature; however, the functionality of the mutations remains to be determined.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carrier Proteins/genetics , Skin Neoplasms/genetics , Amino Acid Sequence , Base Sequence , Carcinoma, Squamous Cell/pathology , Humans , Intracellular Signaling Peptides and Proteins , Melanoma/genetics , Melanoma/pathology , Molecular Sequence Data , Mutation , Promoter Regions, Genetic , Skin Neoplasms/pathology
14.
Proc Natl Acad Sci U S A ; 112(32): 9914-9, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26221020

ABSTRACT

Intracerebral hemorrhagic stroke and vascular dementia are age- and hypertension-associated manifestations of human cerebral small vessel disease (SVD). Cerebral microvessels are formed by endothelial cells (ECs), which are connected through tight junctions, adherens junctions, and stabilizing basement membrane structures. These endothelial connections ensure both vessel stability and blood-brain barrier (BBB) functions, the latter enabling selective exchange of ions, bioactive molecules, and cells between the bloodstream and brain tissue. Srf(iECKO) mice, permitting conditional EC-specific depletion of the transcription factor Serum Response Factor (SRF), suffer from loss of BBB integrity and intracerebral hemorrhaging. Cerebral microbleeds and larger hemorrhages developed upon postnatal and adult depletion of either SRF or its cofactors Myocardin Related Transcription Factor (MRTF-A/-B), revealing essential requirements of ongoing SRF/MRTF activity for maintenance of cerebral small vessel integrity. In vivo magnetic resonance imaging allowed detection, localization, and time-resolved quantification of BBB permeability and hemorrhage formation in Srf(iECKO) brains. At the molecular level, direct and indirect SRF/MRTF target genes, encoding structural components of tight junctions (Claudins and ZO proteins), adherens junctions (VE-cadherin, α-Actinin), and the basement membrane (Collagen IV), were down-regulated upon SRF depletion. These results identify SRF and its MRTF cofactors as major transcriptional regulators of EC junctional stability, guaranteeing physiological functions of the cerebral microvasculature. We hypothesize that impairments in SRF/MRTF activity contribute to human SVD pathology.


Subject(s)
Cerebral Hemorrhage/complications , Endothelial Cells/metabolism , Serum Response Factor/metabolism , Stroke/etiology , Stroke/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Basement Membrane/metabolism , Basement Membrane/pathology , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cadherins/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/physiopathology , Collagen Type IV/metabolism , Down-Regulation , Evans Blue/metabolism , Exploratory Behavior , Extravasation of Diagnostic and Therapeutic Materials , Gene Deletion , Magnetic Resonance Imaging , Mice, Knockout , Microvessels/metabolism , Microvessels/pathology , Motor Activity , Permeability , Serum Response Factor/genetics , Stroke/pathology , Stroke/physiopathology , Tight Junctions/metabolism , Time Factors
15.
PLoS One ; 10(6): e0131614, 2015.
Article in English | MEDLINE | ID: mdl-26121620

ABSTRACT

While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , DEAD-box RNA Helicases/metabolism , GRB2 Adaptor Protein/metabolism , Cell Line , DEAD-box RNA Helicases/genetics , GRB2 Adaptor Protein/genetics , Gene Knockdown Techniques , Humans , Phosphoproteins/metabolism , Protein Binding , Proviruses/genetics , Proviruses/metabolism , Up-Regulation , Viral Matrix Proteins/metabolism , Virion , Virus Assembly , Virus Replication
16.
Glia ; 63(6): 958-76, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25639799

ABSTRACT

In multiple sclerosis (MS), neurons in addition to inflammatory cells are now considered to mediate disease origin and progression. So far, molecular and cellular mechanisms of neuronal MS contributions are poorly understood. Herein we analyzed whether neuron-restricted signaling by the neuroprotective transcription factor serum response factor (SRF) modulates de- and remyelination in a rodent MS model. In the mouse cuprizone model, neuron- (Srf (flox/flox;CaMKCreERT2)) but not glia-specific (Srf (flox/flox;PlpCreERT2)) SRF depletion impaired demyelination suggesting impaired debris clearance by astrocytes and microglia. This supports an important role of SRF expression in neurons but not oligodendrocytes in de- and remyelination. During remyelination, NG2- and OLIG2-positive cells of the oligodendrocyte lineage as well as de novo mRNA synthesis of myelin genes were also reduced in neuron-specific Srf mutants. Using the stripe assay, we demonstrate that cortices of cuprizone-fed wild-type mice elicited astrocyte and microglia activation whereas this was abrogated in cuprizone-fed neuron-specific Srf mutants. We identified CCL chemokines (e.g. CCL2) as neuron-derived SRF-regulated paracrine signals rescuing immune cell activation upon neuronal SRF deletion. In summary, we uncovered important roles of neurons and neuronally expressed SRF in MS associated de- and remyelination.


Subject(s)
Multiple Sclerosis/physiopathology , Myelin Sheath/physiology , Neurons/metabolism , Serum Response Factor/metabolism , Animals , Astrocytes/pathology , Astrocytes/physiology , Cells, Cultured , Chemokine CCL2/metabolism , Cuprizone , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Microglia/physiology , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neurons/pathology , Oligodendroglia/pathology , Oligodendroglia/physiology , RNA, Messenger/metabolism , Serum Response Factor/genetics
17.
Hepatology ; 61(3): 979-89, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25266280

ABSTRACT

UNLABELLED: The ubiquitously expressed transcriptional regulator serum response factor (SRF) is controlled by both Ras/MAPK (mitogen-activated protein kinase) and Rho/actin signaling pathways, which are frequently activated in hepatocellular carcinoma (HCC). We generated SRF-VP16iHep mice, which conditionally express constitutively active SRF-VP16 in hepatocytes, thereby controlling subsets of both Ras/MAPK- and Rho/actin-stimulated target genes. All SRF-VP16iHep mice develop hyperproliferative liver nodules that progresses to lethal HCC. Some murine (m)HCCs acquire Ctnnb1 mutations equivalent to those in human (h)HCC. The resulting transcript signatures mirror those of a distinct subgroup of hHCCs, with shared activation of oncofetal genes including Igf2, correlating with CpG hypomethylation at the imprinted Igf2/H19 locus. CONCLUSION: SRF-VP16iHep mHCC reveal convergent Ras/MAPK and Rho/actin signaling as a highly oncogenic driver mechanism for hepatocarcinogenesis. This suggests simultaneous inhibition of Ras/MAPK and Rho/actin signaling as a treatment strategy in hHCC therapy.


Subject(s)
Liver Neoplasms, Experimental/etiology , Serum Response Factor/physiology , Animals , Cell Proliferation , CpG Islands , DNA Methylation , Gene Expression Profiling , Hepatocytes/pathology , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Insulin-Like Growth Factor II/genetics , Lymphocytes/pathology , Mice , Mutation , beta Catenin/genetics
18.
PLoS One ; 9(9): e107048, 2014.
Article in English | MEDLINE | ID: mdl-25203538

ABSTRACT

Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(-/-) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(-/-) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(-/-) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.


Subject(s)
Arteries/abnormalities , Joint Instability/pathology , Neovascularization, Pathologic/pathology , Proto-Oncogene Proteins c-ets/deficiency , Proto-Oncogene Proteins c-ets/genetics , Retina/pathology , Retinal Neovascularization/pathology , Retinal Vessels/pathology , Skin Diseases, Genetic/pathology , Vascular Malformations/pathology , Angiopoietins/genetics , Angiopoietins/metabolism , Animals , Arteries/metabolism , Arteries/pathology , Disease Models, Animal , Female , Joint Instability/genetics , Joint Instability/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Receptors, TIE/genetics , Receptors, TIE/metabolism , Retina/metabolism , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Signal Transduction/physiology , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factors/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism
19.
Cardiovasc Res ; 104(1): 15-23, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25082846

ABSTRACT

AIMS: Inducible gene targeting in mice using the Cre/LoxP system has become a valuable tool to analyse the roles of specific genes in the adult heart. However, the commonly used Myh6-MerCreMer system requires time-consuming breeding schedules and is potentially associated with cardiac side effects, which may result in transient cardiac dysfunction. The aim of our study was to establish a rapid and simple system for cardiac gene inactivation in conditional knockout mice by gene transfer of a Cre recombinase gene using adeno-associated viral vectors of serotype 9 (AAV9). METHODS AND RESULTS: AAV9 vectors expressing Cre under the control of a human cardiac troponin T promoter (AAV-TnT-Cre) enabled a highly efficient Cre/LoxP switching in cardiomyocytes 2 weeks after injection into 5- to 6-week-old ROSA26-LacZ reporter mice. Recombination efficiency was at least as high as observed with the Myh6-MerCreMer system. No adverse side effects were detected upon application of AAV-TnT-Cre. As proof of principle, we studied AAV-TnT-Cre in a conditional knockout model (Srf-flex1 mice) to deplete the myocardium of the transcription factor serum response factor (SRF). Four weeks after AAV-TnT-Cre injection, a strong decrease in the cardiac expression of SRF mRNA and protein was observed. Furthermore, mice developed a severe cardiac dysfunction with increased interstitial fibrosis in accordance with the central role of SRF for the expression of contractile and calcium trafficking proteins in the heart. CONCLUSIONS: AAV9-mediated expression of Cre is a promising approach for rapid and efficient conditional cardiac gene knockout in adult mice.


Subject(s)
Dependovirus/genetics , Gene Knockdown Techniques , Integrases/genetics , Myocytes, Cardiac/metabolism , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Dependovirus/enzymology , Down-Regulation , Fibrosis , Genotype , Integrases/biosynthesis , Lac Operon , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Phenotype , Promoter Regions, Genetic , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Serum Response Factor/genetics , Serum Response Factor/metabolism , Time Factors , Troponin T/genetics , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
20.
Mech Dev ; 133: 23-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25020278

ABSTRACT

Mesoderm formation in the mouse embryo initiates around E6.5 at the primitive streak and continues until the end of axis extension at E12.5. It requires the process of epithelial-to-mesenchymal transition (EMT), wherein cells detach from the epithelium, adopt mesenchymal cell morphology, and gain competence to migrate. It was shown previously that, prior to mesoderm formation, the transcription factor SRF (Serum Response Factor) is essential for the formation of the primitive streak. To elucidate the role of murine Srf in mesoderm formation during axis extension we conditionally inactivated Srf in nascent mesoderm using the T(s)::Cre driver mouse. Defects in mutant embryos became apparent at E8.75 in the heart and in the allantois. From E9.0 onwards body axis elongation was arrested. Using genome-wide expression analysis, combined with SRF occupancy data from ChIP-seq analysis, we identified a set of direct SRF target genes acting in posterior nascent mesoderm which are enriched for transcripts associated with migratory function. We further show that cell migration is impaired in Srf mutant embryos. Thus, the primary role for SRF in the nascent mesoderm during elongation of the embryonic body axis is the activation of a migratory program, which is a prerequisite for axis extension.


Subject(s)
Mesoderm/embryology , Mesoderm/metabolism , Serum Response Factor/metabolism , Animals , Body Patterning/genetics , Body Patterning/physiology , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/physiology , Epithelial-Mesenchymal Transition/physiology , Fetal Proteins/deficiency , Fetal Proteins/genetics , Fetal Proteins/metabolism , Focal Adhesions/metabolism , Gene Expression Regulation, Developmental , Mesoderm/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Serum Response Factor/deficiency , Serum Response Factor/genetics , Stress Fibers/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...