Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 574, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750105

ABSTRACT

Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hydrolases , Lysosomes , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Hydrolases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Neoplasm Metastasis , Protein Transport , Gene Expression Regulation, Neoplastic
2.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30401431

ABSTRACT

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , Skin/metabolism , Skin/radiation effects , Animals , Cell Line , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Male , Melanocytes/physiology , Melanocytes/radiation effects , Mice , Mice, Inbred C57BL , MicroRNAs/physiology , Microphthalmia-Associated Transcription Factor/radiation effects , Primary Cell Culture , Skin Pigmentation/radiation effects , Ultraviolet Rays/adverse effects
3.
J Invest Dermatol ; 138(10): 2216-2223, 2018 10.
Article in English | MEDLINE | ID: mdl-29679610

ABSTRACT

Melanoma, a melanocyte origin neoplasm, is the most lethal type of skin cancer, and incidence is increasing. Several familial and somatic mutations have been identified in the gene encoding the melanocyte lineage master regulator, MITF; however, the neoplastic mechanisms of these mutant MITF variants are mostly unknown. Here, by performing unbiased analysis of the transcriptomes in cells expressing mutant MITF, we identified calcium-binding protein S100A4 as a downstream target of MITF-E87R. By using wild-type and mutant MITF melanoma lines, we found that both endogenous wild-type and MITF-E87R variants occupy the S100A4 promoter. Remarkably, whereas wild-type MITF represses S100A4 expression, MITF-E87R activates its transcription. The opposite effects of wild-type and mutant MITF result in opposing cellular phenotypes, because MITF-E87R via S100A4 enhanced invasion and reduced adhesion in contrast to wild-type MITF activity. Finally, we found that melanoma patients with altered S100A4 expression have poor prognosis. These data show that a change in MITF transcriptional activity from repression to activation of S100A4 that results from a point mutation in MITF alters melanoma invasive ability. These data suggest new opportunities for diagnosis and treatment of metastatic melanoma.


Subject(s)
DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , Mutation , S100 Calcium-Binding Protein A4/genetics , Skin Neoplasms/genetics , DNA Mutational Analysis , Disease Progression , Humans , Immunoblotting , Melanoma/metabolism , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/metabolism , S100 Calcium-Binding Protein A4/biosynthesis , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...