Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 13(3): 341-347, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428022

ABSTRACT

The influence of the water content on ion and water transport mechanisms in polymer membranes under low to moderate hydration conditions remains poorly understood. In this study, we combine ion and water diffusivity (PFG-NMR) measurements with atomistic molecular dynamics simulations to better understand transport processes in hydrated salt-doped poly(ethylene glycol). Above the water percolation threshold, the experimental and simulated diffusivities are in good agreement with the free volume transport models. At low hydration levels, unlike dry systems, ion diffusion cannot be described by polymer segmental dynamics alone. We rationalize such observations by the interplay between ion-water and ion-polymer solvation of cations and between ion-water and cation-anion interactions for anions. Further, we demonstrate that a two-state model combining ion-water solvation and free volume transport can describe water dynamics across the entire hydration range of interest. Our findings provide a more encompassing analysis of ion and water transport in hydrated polyelectrolytes, specifically in the low hydration regime.

2.
J Phys Chem B ; 127(8): 1842-1855, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36795084

ABSTRACT

Ion exchange membranes (IEMs) are frequently used in water treatment and electrochemical applications, with their ion separation properties largely governed by equilibrium ion partitioning between a membrane and contiguous solution. Despite an expansive literature on IEMs, the influence of electrolyte association (i.e., ion pairing) on ion sorption remains relatively unexplored. In this study, salt sorption in two commercial cation exchange membranes equilibrated with 0.01-1.0 M MgSO4 and Na2SO4 is investigated experimentally and theoretically. Association measurements of salt solutions using conductometric experiments and the Stokes-Einstein approximation show significant concentrations of ion pairs in MgSO4 and Na2SO4 relative to those in simple electrolytes (i.e., NaCl), which is consistent with prior studies of sulfate salts. The Manning/Donnan model, developed and validated for halide salts in previous studies, substantially underpredicts sulfate sorption measurements, presumably due to ion pairing effects not accounted for in this established theory. These findings suggest that ion pairing can enhance salt sorption in IEMs due to partitioning of reduced valence species. By reformulating the Donnan and Manning models, a theoretical framework for predicting salt sorption in IEMs that explicitly considers electrolyte association is developed. Remarkably, theoretical predictions of sulfate sorption are improved by over an order of magnitude by accounting for ion speciation. In some cases, good quantitative agreement is observed between theoretical and experimental values for external salt concentrations between 0.1 and 1.0 M using no adjustable parameters.

3.
Chem Rev ; 120(23): 12873-12902, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33026798

ABSTRACT

The extent to which cations and anions in ionic liquids (ILs) and ionic liquid solutions are dissociated is of both fundamental scientific interest and practical importance because ion dissociation has been shown to impact viscosity, density, surface tension, volatility, solubility, chemical reactivity, and many other important chemical and physical properties. When mixed with solvents, ionic liquids provide the unique opportunity to investigate ion dissociation from infinite dilution in the solvent to a completely solvent-free state, even at ambient conditions. The most common way to estimate ion dissociation in ILs and IL solutions is by comparing the molar conductivity determined from ionic conductivity measurements such as electrochemical impedance spectroscopy (EIS) (which measure the movement of only the charged, i.e., dissociated, ions) with the molar conductivity calculated from ion diffusivities measured by pulse field gradient nuclear magnetic resonance spectroscopy (PFG-NMR, which gives movement of all of the ions). Because the NMR measurements are time-consuming, the number of ILs and IL solutions investigated by this method is relatively limited. We have shown that use of the Stokes-Einstein equation with estimates of the effective ion Stokes radii allows ion dissociation to be calculated from easily measured density, viscosity, and ionic conductivity data (ρ, η, λ), which is readily available in the literature for a much larger number of pure ILs and IL solutions. Therefore, in this review, we present values of ion dissociation for ILs and IL solutions (aqueous and nonaqueous) determined by both the traditional molar conductivity/PFG-NMR method and the ρ, η, λ method. We explore the effect of cation and anion alkyl chain length, structure, and interaction motifs of the cation and anion, temperature, and the strength of the solvent in IL solutions.

4.
J Phys Chem B ; 123(6): 1348-1358, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30645124

ABSTRACT

We employ precise measuring techniques to determine the densities, viscosities, and ionic conductivities of three aqueous 1-ethyl-3-methylimidazolium [emim]+ ionic liquid (IL) systems with minimal experimental uncertainty. We simultaneously present a novel method for estimating ion dissociation relying only on these three measurements and the estimated Stokes radii of the ions based on the Stokes-Einstein and Nernst-Einstein equations. Ion dissociation values are estimated across a range of IL concentrations, emphasizing dilute IL regions, using ionic radii calculated from widely used UNIQUAC and UNIFAC values. With these approximations and assuming the presence of only ion pairs, the ion dissociation of all three ILs reaches a minimum value at a water mole fraction of about 0.98. Upon further dilution with water, the ion dissociation increases as the system approaches infinite dilution of the IL. We postulate that the apparent minimum in the ion dissociation is caused by the Stokes radii of the cation and anion increasing as the concentration becomes more dilute, due to the formation of ion triplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...