Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Function (Oxf) ; 5(3): zqae005, 2024.
Article in English | MEDLINE | ID: mdl-38706964

ABSTRACT

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Muscle, Skeletal , Neuronal Plasticity , Adult , Female , Humans , Male , Young Adult , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/blood , Exercise/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Muscle, Skeletal/metabolism , Protein Precursors/metabolism
2.
FASEB J ; 37(3): e22811, 2023 03.
Article in English | MEDLINE | ID: mdl-36786723

ABSTRACT

Cumulative evidence supports the hypothesis that hypoxia acts as a regulator of muscle mass. However, the underlying molecular mechanisms remain incompletely understood, particularly in human muscle. Here we examined the effect of hypoxia on signaling pathways related to ribosome biogenesis and myogenic activity following an acute bout of resistance exercise. We also investigated whether hypoxia influenced the satellite cell response to resistance exercise. Employing a randomized, crossover design, eight men performed resistance exercise in normoxia (FiO2 21%) or normobaric hypoxia (FiO2 12%). Muscle biopsies were collected in a time-course manner (before, 0, 90, 180 min and 24 h after exercise) and were analyzed with respect to cell signaling, gene expression and satellite cell content using immunoblotting, RT-qPCR and immunofluorescence, respectively. In normoxia, resistance exercise increased the phosphorylation of RPS6, TIF-1A and UBF above resting levels. Hypoxia reduced the phosphorylation of these targets by ~37%, ~43% and ~ 67% throughout the recovery period, respectively (p < .05 vs. normoxia). Resistance exercise also increased 45 S pre-rRNA expression and mRNA expression of c-Myc, Pol I and TAF-1A above resting levels, but no differences were observed between conditions. Similarly, resistance exercise increased mRNA expression of myogenic regulatory factors throughout the recovery period and Pax7+ cells were elevated 24 h following exercise in mixed and type II muscle fibers, with no differences observed between normoxia and hypoxia. In conclusion, acute hypoxia attenuates ribosome signaling, but does not impact satellite cell pool expansion and myogenic gene expression following a bout of resistance exercise in human skeletal muscle.


Subject(s)
Resistance Training , Satellite Cells, Skeletal Muscle , Male , Humans , Resistance Training/methods , Muscle, Skeletal/metabolism , Ribosomes/metabolism , Hypoxia/metabolism , Signal Transduction , Satellite Cells, Skeletal Muscle/metabolism , RNA, Messenger/metabolism
3.
Am J Physiol Cell Physiol ; 324(2): C477-C487, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36622074

ABSTRACT

Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.


Subject(s)
Autocrine Communication , Lactic Acid , Female , Humans , Male , Lactic Acid/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...