Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 2(11): 766-70, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21072368

ABSTRACT

Sulfite oxidase (SO) is a molybdenum-cofactor-dependent enzyme that catalyzes the oxidation of sulfite to sulfate, the final step in the catabolism of the sulfur-containing amino acids, cysteine and methionine. The catalytic mechanism of vertebrate SO involves intramolecular electron transfer (IET) from molybdenum to the integral b-type heme of SO and then to exogenous cytochrome c. However, the crystal structure of chicken sulfite oxidase (CSO) has shown that there is a 32 Å distance between the Fe and Mo atoms of the respective heme and molybdenum domains, which are connected by a flexible polypeptide tether. This distance is too long to be consistent with the measured IET rates. Previous studies have shown that IET is viscosity dependent (Feng et al., Biochemistry, 2002, 41, 5816) and also dependent upon the flexibility and length of the tether (Johnson-Winters et al., Biochemistry, 2010, 49, 1290). Since IET in CSO is more rapid than in human sulfite oxidase (HSO) (Feng et al., Biochemistry, 2003, 42, 12235) the tether sequence of HSO has been mutated into that of CSO, and the resultant chimeric HSO enzyme investigated by laser flash photolysis and steady-state kinetics in order to study the specificity of the tether sequence of SO on the kinetic properties. Surprisingly, the IET kinetics of the chimeric HSO protein with the CSO tether sequence are slower than wildtype HSO. This observation raises the possibility that the composition of the non-conserved tether sequence of animal SOs may be optimized for individual species.


Subject(s)
Amino Acid Substitution , Heme/chemistry , Molybdenum/chemistry , Peptides/genetics , Sulfite Oxidase/metabolism , Amino Acid Sequence , Animals , Biocatalysis , Chickens , Coenzymes/chemistry , Humans , Metalloproteins/chemistry , Molecular Sequence Data , Molybdenum Cofactors , Pteridines/chemistry , Sulfite Oxidase/chemistry , Sulfite Oxidase/genetics
2.
Biochemistry ; 49(25): 5154-9, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20491442

ABSTRACT

The Mo(V) state of the molybdoenzyme sulfite oxidase (SO) is paramagnetic and can be studied by electron paramagnetic resonance (EPR) spectroscopy. Vertebrate SO at pH <7 and >9 exhibits characteristic EPR spectra that correspond to two structurally different forms of the Mo(V) active center termed the low-pH (lpH) and high-pH (hpH) forms, respectively. Both EPR forms have an exchangeable equatorial OH ligand, but its orientation in the two forms is different. It has been hypothesized that the formation of the lpH species is dependent on the presence of chloride. In this work, we have prepared and purified samples of the wild type and various mutants of human SO that are depleted of chloride. These samples do not exhibit the typical lpH EPR spectrum at low pH but rather exhibit spectra that are characteristic of the blocked species that contains an exchangeable equatorial sulfate ligand. Addition of chloride to these samples results in the disappearance of the blocked species and the formation of the lpH species. Similarly, if chloride is added before sulfite, the lpH species is formed instead of the blocked one. Qualitatively similar results were observed for samples of sulfite-oxidizing enzymes from other organisms that were previously reported to form a blocked species at low pH. However, the depletion of chloride has no effect upon the formation of the hpH species.


Subject(s)
Anions , Chlorides/chemistry , Electron Spin Resonance Spectroscopy/methods , Sulfite Oxidase/chemistry , Humans
3.
Biochemistry ; 49(6): 1290-6, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20063894

ABSTRACT

Sulfite oxidase (SO) is a vitally important molybdenum enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic mechanism of vertebrate SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme and two intermolecular one-electron steps to exogenous cytochrome c. In the crystal structure of chicken SO [Kisker, C., et al. (1997) Cell 91, 973-983], which is highly homologous to human SO (HSO), the heme iron and molybdenum centers are separated by 32 A and the domains containing these centers are linked by a flexible polypeptide tether. Conformational changes that bring these two centers into greater proximity have been proposed [Feng, C., et al. (2003) Biochemistry 42, 5816-5821] to explain the relatively rapid IET kinetics, which are much faster than those theoretically predicted from the crystal structure. To explore the proposed role(s) of the tether in facilitating this conformational change, we altered both its length and flexibility in HSO by site-specific mutagenesis, and the reactivities of the resulting variants have been studied using laser flash photolysis and steady-state kinetics assays. Increasing the flexibility of the tether by mutating several conserved proline residues to alanines did not produce a discernible systematic trend in the kinetic parameters, although mutation of one residue (P105) to alanine produced a 3-fold decrease in the IET rate constant. Deletions of nonconserved amino acids in the 14-residue tether, thereby shortening its length, resulted in more drastically reduced IET rate constants. Thus, the deletion of five amino acid residues decreased IET by 70-fold, so that it was rate-limiting in the overall reaction. The steady-state kinetic parameters were also significantly affected by these mutations, with the P111A mutation causing a 5-fold increase in the sulfite K(m) value, perhaps reflecting a decrease in the ability to bind sulfite. The electron paramagnetic resonance spectra of these proline to alanine and deletion mutants are identical to those of wild-type HSO, indicating no significant change in the Mo active site geometry.


Subject(s)
Sulfite Oxidase/chemistry , Alanine/genetics , Amino Acid Substitution/genetics , Animals , Catalytic Domain/genetics , Chickens , Conserved Sequence/genetics , Electron Spin Resonance Spectroscopy , Electron Transport/genetics , Humans , Kinetics , Molybdenum/chemistry , Mutagenesis, Site-Directed , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Proline/genetics , Protein Structure, Tertiary/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion/genetics , Sulfite Oxidase/genetics , Sulfite Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...