Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Crit Care ; 27(1): 73, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36823636

ABSTRACT

PURPOSE: This study aimed to assess the effect of different blood pressure levels on global cerebral metabolism in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). METHODS: In a double-blinded trial, we randomly assigned 60 comatose patients following OHCA to low (63 mmHg) or high (77 mmHg) mean arterial blood pressure (MAP). The trial was a sub-study in the Blood Pressure and Oxygenation Targets after Out-of-Hospital Cardiac Arrest-trial (BOX). Global cerebral metabolism utilizing jugular bulb microdialysis (JBM) and cerebral oxygenation (rSO2) was monitored continuously for 96 h. The lactate-to-pyruvate (LP) ratio is a marker of cellular redox status and increases during deficient oxygen delivery (ischemia, hypoxia) and mitochondrial dysfunction. The primary outcome was to compare time-averaged means of cerebral energy metabolites between MAP groups during post-resuscitation care. Secondary outcomes included metabolic patterns of cerebral ischemia, rSO2, plasma neuron-specific enolase level at 48 h and neurological outcome at hospital discharge (cerebral performance category). RESULTS: We found a clear separation in MAP between the groups (15 mmHg, p < 0.001). Cerebral biochemical variables were not significantly different between MAP groups (LPR low MAP 19 (16-31) vs. high MAP 23 (16-33), p = 0.64). However, the LP ratio remained high (> 16) in both groups during the first 30 h. During the first 24 h, cerebral lactate > 2.5 mM, pyruvate levels > 110 µM, LP ratio > 30, and glycerol > 260 µM were highly predictive for poor neurological outcome and death with AUC 0.80. The median (IQR) rSO2 during the first 48 h was 69.5% (62.0-75.0%) in the low MAP group and 69.0% (61.3-75.5%) in the high MAP group, p = 0.16. CONCLUSIONS: Among comatose patients resuscitated from OHCA, targeting a higher MAP 180 min after ROSC did not significantly improve cerebral energy metabolism within 96 h of post-resuscitation care. Patients with a poor clinical outcome exhibited significantly worse biochemical patterns, probably illustrating that insufficient tissue oxygenation and recirculation during the initial hours after ROSC were essential factors determining neurological outcome.


Subject(s)
Cardiopulmonary Resuscitation , Hypertension , Hypotension , Out-of-Hospital Cardiac Arrest , Humans , Blood Pressure , Brain/metabolism , Coma , Double-Blind Method , Hypertension/complications , Hypotension/complications , Lactates/metabolism , Out-of-Hospital Cardiac Arrest/complications , Pyruvates/metabolism
2.
J Neurotrauma ; 40(11-12): 1257-1258, 2023 06.
Article in English | MEDLINE | ID: mdl-36448587

Subject(s)
Brain , Delusions , Head
3.
Front Neurol ; 13: 968288, 2022.
Article in English | MEDLINE | ID: mdl-36034291

ABSTRACT

The microdialysis technique was initially developed for monitoring neurotransmitters in animals. In 1995 the technique was adopted to clinical use and bedside enzymatic analysis of glucose, pyruvate, lactate, glutamate and glycerol. Under clinical conditions microdialysis has also been used for studying cytokines, protein biomarkers, multiplex proteomic and metabolomic analyses as well as for pharmacokinetic studies and evaluation of blood-brain barrier function. This review focuses on the variables directly related to cerebral energy metabolism and the possibilities and limitations of microdialysis during routine neurosurgical and general intensive care. Our knowledge of cerebral energy metabolism is to a large extent based on animal experiments performed more than 40 years ago. However, the different biochemical information obtained from various techniques should be recognized. The basic animal studies analyzed brain tissue homogenates while the microdialysis technique reflects the variables in a narrow zone of interstitial fluid surrounding the probe. Besides the difference of the volume investigated, the levels of the biochemical variables differ in different compartments. During bedside microdialysis cerebral energy metabolism is primarily reflected in measured levels of glucose, lactate and pyruvate and the lactate to pyruvate (LP) ratio. The LP ratio reflects cytoplasmatic redox-state which increases instantaneously during insufficient aerobic energy metabolism. Cerebral ischemia is characterized by a marked increase in intracerebral LP ratio at simultaneous decreases in intracerebral levels of pyruvate and glucose. Mitochondrial dysfunction is characterized by a moderate increase in LP ratio at a very marked increase in cerebral lactate and normal or elevated levels of pyruvate and glucose. The patterns are of importance in particular for interpretations in transient cerebral ischemia. A new technique for evaluating global cerebral energy metabolism by microdialysis of the draining cerebral venous blood is discussed. In experimental studies it has been shown that pronounced global cerebral ischemia is reflected in venous cerebral blood. Jugular bulb microdialysis has been investigated in patients suffering from subarachnoid hemorrhage, during cardiopulmonary bypass and resuscitation after out of hospital cardiac arrest. Preliminary results indicate that the new technique may give valuable information of cerebral energy metabolism in clinical conditions when insertion of an intracerebral catheter is contraindicated.

4.
Intensive Care Med Exp ; 10(1): 4, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35118520

ABSTRACT

BACKGROUND: The use of norepinephrine in the case of life-threatening haemorrhagic shock is well established but widely discussed. The present study was designed to compare the effects of early norepinephrine treatment vs. no treatment on cerebral energy metabolism during haemorrhagic shock. METHODS: Twelve pigs were subjected to haemorrhagic shock, 4 in the control group and 8 in the norepinephrine (NE) group. Following a 60 min baseline period haemorrhagic shock was achieved by bleeding all animals to a pre-defined mean arterial blood pressure (MAP) of approximately 40 mm Hg. When mean arterial pressure had decreased to 40 mmHg NE infusion started in the treatment group. After 90 min, NE infusion stopped, and all pigs were resuscitated with autologous blood and observed for 2.5 h. During the experiment cerebral tissue oxygenation (PbtO2) was monitored continuously and variables reflecting cerebral energy metabolism (glucose, lactate, pyruvate, glutamate, glycerol) were measured by utilizing intracerebral microdialysis. RESULTS: All 12 pigs completed the protocol. NE infusion resulted in significantly higher MAP (p < 0.001). During the shock period lactate/pyruvate (LP) ratio group increased from 20 (15-29) to 66 (38-82) (median (IQR)) in the control group but remained within normal limits in the NE group. The significant increase in LP ratio in the control group remained after resuscitation. After induction of shock PbtO2 decreased markedly in the control group and was significantly lower than in the NE group during the resuscitation phase. CONCLUSION: NE infusion during haemorrhagic shock improved cerebral energy metabolism compared with no treatment.

6.
Sci Rep ; 11(1): 15871, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354178

ABSTRACT

Bedside detection and early treatment of lasting cerebral ischemia may improve outcome after out-of-hospital cardiac arrest (OHCA). This feasibility study explores the possibilities to use microdialysis (MD) for continuous monitoring of cerebral energy metabolism by analyzing the draining cerebral venous blood. Eighteen comatose patients were continuously monitored with jugular bulb and radial artery (reference) MD following resuscitation. Median time from cardiac arrest to MD was 300 min (IQR 230-390) with median monitoring time 60 h (IQR 40-81). The lactate/pyruvate ratio in cerebral venous blood was increased during the first 20 h after OHCA, and significant differences in time-averaged mean MD metabolites between jugular venous and artery measurements, were documented (p < 0.02). In patients with unfavorable outcome (72%), cerebral venous lactate and pyruvate levels remained elevated during the study period. In conclusion, the study indicates that jugular bulb microdialysis (JBM) is feasible and safe. Biochemical signs of lasting ischemia and mitochondrial dysfunction are frequent and associated with unfavorable outcome. The technique may be used in comatose OHCA patients to monitor biochemical variables reflecting ongoing brain damage and support individualized treatment early after resuscitation.


Subject(s)
Brain Injuries/diagnosis , Brain Ischemia/diagnosis , Out-of-Hospital Cardiac Arrest/complications , Adult , Aged , Biomarkers/blood , Brain/metabolism , Brain Injuries/blood , Brain Ischemia/blood , Cerebral Veins/metabolism , Energy Metabolism , Feasibility Studies , Female , Humans , Lactic Acid/analysis , Lactic Acid/blood , Male , Microdialysis/methods , Middle Aged , Out-of-Hospital Cardiac Arrest/blood , Oxygen/metabolism , Prospective Studies , Pyruvic Acid/analysis , Pyruvic Acid/blood
9.
Metabolites ; 10(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668656

ABSTRACT

Mitochondrial dysfunction after transient cerebral ischemia can be monitored by cerebral microdialysis (CMD) using changes in the lactate and pyruvate concentrations and ratio. Other metabolites associated with mitochondrial (dys)function are, e.g., tricyclic acid (TCA) and purine metabolites. Ethyl pyruvate (EP) is a putative neuroprotectant, supposedly targeting mitochondrial energy metabolism, but its effect on cerebral energy metabolism has never been described using microdialysis. In this study we monitored the metabolic effects of EP in the endothelin-1 (ET-1) rat model using perfusion with 13C-succinate and analysis of endogenous and 13C-labeled metabolites in the dialysates by liquid chromatography-mass spectrometry (LC-MS). Adult Sprague Dawley rats (n = 27 of which n = 11 were included in the study) were subjected to the microdialysis experiments. Microdialysis probes were perfused with 13C-labeled succinate (1 mM), and striatal dialysates were collected at 30 min intervals before induction of the insult, during intracerebral application of ET-1, and during intravenous treatment with either EP (40 mg/kg) or placebo, which was administered immediately after the insult. The rats were subjected to transient cerebral ischemia by unilateral microinjection of ET-1 in the piriform cortex, causing vasoconstriction of the medial cerebral artery. Monitoring was continued for 5 h after reperfusion, and levels of endogenous and 13C-labeled energy metabolites before and after ischemia-reperfusion were compared in EP-treated and control groups. Infarct volumes were assessed after 24 h. In both the EP-treated and placebo groups, ET-1-induced vasoconstriction resulted in a transient depression of interstitial glucose and elevation of lactate in the ipsilateral striatum. In the reperfusion phase, the concentrations of labeled malate, isocitrate, and lactate as well as endogenous xanthine were significantly higher in the EP-group than in the placebo-group: (mean ± SEM) labeled malate: 39.5% ± 14.9, p = 0.008; labeled isocitrate: 134.8% ± 67.9, p = 0.047; labeled lactate: 61% ± 22.0, p = 0.007; and endogenous xanthine: 93.9% ± 28.3, p = 0.0009. In the placebo group, significantly elevated levels of uridine were observed (mean ± SEM) 32.5% ± 12.7, p = 0.01. Infarct volumes were not significantly different between EP-treated and placebo groups, p = 0.4679. CMD labeled with 13C-succinate enabled detection of ischemic induction and EP treatment effects in the ET-1 rat model of transient focal cerebral ischemia. EP administered as a single intravenous bolus in the reperfusion-phase after transient cerebral ischemia increased de novo synthesis of several key intermediate energy metabolites (13C-malate, 13C-isocitrate, and endogenous xanthine). In summary, mitochondria process 13C-succinate more effectively after EP treatment.

10.
Neurocrit Care ; 33(1): 241-255, 2020 08.
Article in English | MEDLINE | ID: mdl-31845174

ABSTRACT

BACKGROUND: Cerebral metabolic perturbations are common in aneurysmal subarachnoid hemorrhage (aSAH). Monitoring cerebral metabolism with intracerebral microdialysis (CMD) allows early detection of secondary injury and may guide decisions on neurocritical care interventions, affecting outcome. However, CMD is a regional measuring technique that is influenced by proximity to focal lesions. Continuous microdialysis of the cerebral venous drainage may provide information on global cerebral metabolism relevant for the care of aSAH patients. This observational study aimed to explore the feasibility of jugular bulb microdialysis (JBMD) in aSAH and describe the output characteristics in relation to conventional multimodal monitoring. METHODS: Patients with severe aSAH were included at admission or after in-house deterioration when local clinical guidelines prompted extended multimodal monitoring. Non-dominant frontal CMD, intracranial pressure (ICP), partial brain tissue oxygenation pressure (PbtO2), and cerebral perfusion pressure (CPP) were recorded every hour. The dominant jugular vein was accessed by retrograde insertion of a microdialysis catheter with the tip placed in the jugular bulb under ultrasound guidance. Glucose, lactate, pyruvate, lactate/pyruvate ratio, glycerol, and glutamate were studied for correlation to intracranial measurements. Modified Rankin scale was assessed at 6 months. RESULTS: Twelve adult aSAH patients were monitored during a mean 4.2 ± 2.6 days yielding 22,041 data points for analysis. No complications related to JBMD were observed. Moderate or strong significant monotonic CMD-to-JBMD correlations were observed most often for glucose (7 patients), followed by lactate (5 patients), and pyruvate, glycerol, and glutamate (3 patients). Moderate correlation for lactate/pyruvate ratio was only seen in one patient. Analysis of critical periods defined by ICP > 20, CPP < 65, or PbtO2 < 15 revealed a tendency toward stronger CMD-to-JBMD associations in patients with many or long critical periods. Possible time lags between CMD and JBMD measurements were only identified in 6 out of 60 patient variables. With the exception of pyruvate, a dichotomized outcome was associated with similar metabolite patterns in JBMD and CMD. A nonsignificant tendency toward greater differences between outcome groups was seen in JBMD. CONCLUSIONS: Continuous microdialysis monitoring of the cerebral drainage in the jugular bulb is feasible and safe. JBMD-to-CMD correlation is influenced by the type of metabolite measured, with glucose and lactate displaying the strongest associations. JBMD lactate correlated more often than CMD lactate to CPP, implying utility for detection of global cerebral metabolic perturbations. Studies comparing JBMD to other global measures of cerebral metabolism, e.g., PET CT or Xenon CT, are warranted.


Subject(s)
Jugular Veins , Microdialysis/methods , Subarachnoid Hemorrhage/metabolism , Adult , Aged , Aged, 80 and over , Aneurysm, Ruptured/metabolism , Aneurysm, Ruptured/physiopathology , Cerebrovascular Circulation/physiology , Feasibility Studies , Female , Frontal Lobe/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Glycerol/metabolism , Humans , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/physiopathology , Intracranial Pressure/physiology , Lactic Acid/metabolism , Male , Middle Aged , Monitoring, Physiologic , Oxygen/metabolism , Partial Pressure , Prospective Studies , Pyruvic Acid/metabolism , Subarachnoid Hemorrhage/physiopathology
11.
Intensive Care Med Exp ; 7(1): 67, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31802303

ABSTRACT

BACKGROUND: Damage control resuscitation (DCR) and damage control surgery (DCS) is the main strategy in patients with uncontrollable hemorrhagic shock. One aspect of DCR is permissive hypotension. However, the duration of hypotension that can be tolerated without affecting the brain is unknown. In the present study we investigate the effect of 60 min severe hypotension on the brain's energy metabolism and seek to verify earlier findings that venous cerebral blood can be used as a marker of global cerebral energy state. MATERIAL AND METHODS: Ten pigs were anaesthetized, and vital parameters recorded. Microdialysis catheters were placed in the left parietal lobe, femoral artery, and superior sagittal sinus for analysis of lactate, pyruvate, glucose, glycerol, and glutamate. Hemorrhagic shock was induced by bleeding the animal until mean arterial pressure (MAP) of 40 mmHg was achieved. After 60 min the pigs were resuscitated with autologous blood and observed for 3 h. RESULTS: At baseline the lactate to pyruvate ratios (LP ratio) in the hemisphere, artery, and sagittal sinus were (median (interquartile range)) 13 (8-16), 21 (18-24), and 9 (6-22), respectively. After induction of hemorrhagic shock, the LP ratio from the left hemisphere in 9 pigs increased to levels indicating a reversible perturbation of cerebral energy metabolism 19 (12-30). The same pattern was seen in LP measurements from the femoral artery 28 (20-35) and sagittal sinus 22 (19-26). At the end of the experiment hemisphere, artery and sinus LP ratios were 16 (10-23), 17 (15-25), and 17 (10-27), respectively. Although hemisphere and sinus LP ratios decreased, they did not reach baseline levels (p < 0.05). In one pig hemisphere LP ratio increased to a level indicating irreversible metabolic perturbation (LP ratio > 200). CONCLUSION: During 60 min of severe hypotension intracerebral microdialysis shows signs of perturbations of cerebral energy metabolism, and these changes trend towards baseline values after resuscitation. Sagittal sinus microdialysis values followed hemisphere values but were not distinguishable from systemic arterial values. Venous (jugular bulb) microdialysis might have a place in monitoring conditions where global cerebral ischemia is a risk.

12.
Metabolites ; 9(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569792

ABSTRACT

Cerebral micro-dialysis allows continuous sampling of extracellular metabolites, including glucose, lactate and pyruvate. Transient ischemic events cause a rapid drop in glucose and a rise in lactate levels. Following such events, the lactate/pyruvate (L/P) ratio may remain elevated for a prolonged period of time. In neurointensive care clinics, this ratio is considered a metabolic marker of ischemia and/or mitochondrial dysfunction. Here we propose a novel, sensitive microdialysis liquid chromatography-mass spectrometry (LC-MS) approach to monitor mitochondrial dysfunction in living brain using perfusion with 13C-labeled succinate and analysis of 13C-labeled tricarboxylic acid cycle (TCA) intermediates. This approach was evaluated in rat brain using malonate-perfusion (10-50 mM) and endothelin-1 (ET-1)-induced transient cerebral ischemia. In the malonate model, the expected changes upon inhibition of succinate dehydrogenase (SDH) were observed, i.e., an increase in endogenous succinate and decreases in fumaric acid and malic acid. The inhibition was further elaborated by incorporation of 13C into specific TCA intermediates from 13C-labeled succinate. In the ET-1 model, increases in non-labeled TCA metabolites (reflecting release of intracellular compounds) and decreases in 13C-labeled TCA metabolites (reflecting inhibition of de novo synthesis) were observed. The analysis of 13C incorporation provides further layers of information to identify metabolic disturbances in experimental models and neuro-intensive care patients.

13.
J Neurotrauma ; 36(23): 3253-3263, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31210099

ABSTRACT

Traumatic brain injury (TBI) contributes to almost one third of all trauma-related deaths, and those that survive often suffer from long-term physical and cognitive deficits. Ciclosporin (cyclosporine, cyclosporin A) has shown promising neuroprotective properties in pre-clinical TBI models. The Copenhagen Head Injury Ciclosporin (CHIC) study was initiated to establish the safety profile and pharmacokinetics of ciclosporin in patients with severe TBI, using a novel parenteral lipid emulsion formulation. Exploratory pharmacodynamic study measures included microdialysis in brain parenchyma and protein biomarkers of brain injury in the cerebrospinal fluid (CSF). Sixteen adult patients with severe TBI (Glasgow Coma Scale 4-8) were included, and all patients received an initial loading dose of 2.5 mg/kg followed by a continuous infusion for 5 days. The first 10 patients received an infusion dosage of 5 mg/kg/day whereas the subsequent 6 patients received 10 mg/kg/day. No mortality was registered within the study duration, and the distribution of adverse events was similar between the two treatment groups. Pharmacokinetic analysis of CSF confirmed dose-dependent brain exposure. Between- and within-patient variability in blood concentrations was limited, whereas CSF concentrations were more variable. The four biomarkers, glial fibrillary acidic protein, neurofilament light, tau, and ubiquitin carboxy-terminal hydrolase L1, showed consistent trends to decrease during the 5-day treatment period, whereas the samples taken on the days after the treatment period showed higher values in the majority of patients. In conclusion, ciclosporin, as administered in this study, is safe and well tolerated. The study confirmed that ciclosporin is able to pass the blood-brain barrier in a TBI population and provided an initial biomarker-based signal of efficacy.


Subject(s)
Brain Injuries, Traumatic/cerebrospinal fluid , Brain Injuries, Traumatic/drug therapy , Cyclosporine/pharmacokinetics , Immunosuppressive Agents/pharmacokinetics , Severity of Illness Index , Adult , Biomarkers/cerebrospinal fluid , Brain Injuries, Traumatic/epidemiology , Cyclosporine/adverse effects , Cyclosporine/therapeutic use , Denmark/epidemiology , Female , Glasgow Coma Scale/standards , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Young Adult
14.
Trials ; 20(1): 344, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182135

ABSTRACT

BACKGROUND: Neurological injuries remain the leading cause of death in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). Adequate blood pressure is of paramount importance to optimize cerebral perfusion and to minimize secondary brain injury. Markers measuring global cerebral ischemia caused by cardiac arrest and consecutive resuscitation and reflecting the metabolic variations after successful resuscitation are needed to assist a more individualized post-resuscitation care. Currently, no technique is available for bedside evaluation of global cerebral energy state, and until now blood pressure targets have been based on limited clinical evidence. Recent experimental and clinical studies indicate that it might be possible to evaluate cerebral oxidative metabolism from measuring the lactate-to-pyruvate (LP) ratio of the draining venous blood. In this study, jugular bulb microdialysis and immediate bedside biochemical analysis are introduced as new diagnostic tools to evaluate the effect of higher mean arterial blood pressure on global cerebral metabolism and the degree of cellular damage after OHCA. METHODS/DESIGN: This is a single-center, randomized, double-blinded, superiority trial. Sixty unconscious patients with sustained return of spontaneous circulation after OHCA will be randomly assigned in a one-to-one fashion to low (63 mm Hg) or high (77 mm Hg) mean arterial blood pressure target. The primary end-point will be a difference in mean LP ratio within 48 h between blood pressure groups. Secondary end-points are (1) association between LP ratio and all-cause intensive care unit (ICU) mortality and (2) association between LP ratio and survival to hospital discharge with poor neurological function. DISCUSSION: Markers measuring cerebral ischemia caused by cardiac arrest and consecutive resuscitation and reflecting the metabolic changes after successful resuscitation are urgently needed to enable a more personalized post-resuscitation care and prognostication. Jugular bulb microdialysis may provide a reliable global estimate of cerebral metabolic state and can be implemented as an entirely new and less invasive diagnostic tool for ICU patients after OHCA and has implications for early prognosis and treatment. TRIAL REGISTRATION: ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT03095742 ). Registered March 30, 2017.


Subject(s)
Blood Pressure , Brain/metabolism , Cardiopulmonary Resuscitation , Energy Metabolism , Out-of-Hospital Cardiac Arrest/therapy , Research Design , Double-Blind Method , Humans , Lactic Acid/metabolism , Microdialysis , Pyruvic Acid/metabolism
15.
Sci Rep ; 9(1): 3702, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842488

ABSTRACT

Cerebral microdialysis can be used to detect mitochondrial dysfunction, a potential target of neuroprotective treatment. Cyclosporin A (CsA) is a mitochondrial stabiliser that in a recent clinical stroke trial showed protective potential in patients with successful recanalisation. To investigate specific metabolic effects of CsA during reperfusion, and hypothesising that microdialysis values can be used as a proxy outcome measure, we assessed the temporal patterns of cerebral energy substrates related to oxidative metabolism in a model of transient focal ischaemia. Transient ischaemia was induced by intracerebral microinjection of endothelin-1 (150 pmol/15 µL) through stereotaxically implanted guide cannulas in awake, freely moving rats. This was immediately followed by an intravenous injection of CsA (NeuroSTAT; 15 mg/kg) or placebo solution during continuous microdialysis monitoring. After reperfusion, the lactate/pyruvate ratio (LPR) was significantly lower in the CsA group vs placebo (n = 17, 60.6 ± 24.3%, p = 0.013). Total and striatal infarct volumes (mm3) were reduced in the treatment group (n = 31, 61.8 ± 6.0 vs 80.6 ± 6.7, p = 0.047 and 29.9 ± 3.5 vs 41.5 ± 3.9, p = 0.033). CsA treatment thus ameliorated cerebral reperfusion metabolism and infarct size. Cerebral microdialysis may be useful in evaluating putative neuroprotectants in ischaemic stroke.


Subject(s)
Cyclosporine/pharmacology , Ischemic Attack, Transient/drug therapy , Ischemic Attack, Transient/metabolism , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cell Respiration/drug effects , Cyclosporine/administration & dosage , Cyclosporine/metabolism , Endothelin-1/metabolism , Infarction/drug therapy , Infarction/physiopathology , Male , Microdialysis/methods , Mitochondria/metabolism , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Stroke/physiopathology
17.
Acta Anaesthesiol Scand ; 63(3): 329-336, 2019 03.
Article in English | MEDLINE | ID: mdl-30328110

ABSTRACT

BACKGROUND: Compromised cerebral energy metabolism is common in patients with bacterial meningitis. In this study, simultaneous measurements of cerebral oxygen tension and lactate/pyruvate ratio were compared to explore whether disturbed energy metabolism was usually caused by insufficient tissue oxygenation or compromised oxidative metabolism of pyruvate indicating mitochondrial dysfunction. SUBJECT AND METHODS: Ten consecutive patients with severe streptococcus meningitis were included in this prospective cohort study. Intracranial pressure, brain tissue oxygen tension (PbtO2 ), and energy metabolism (intracerebral microdialysis) were continuously monitored in nine patients. A cerebral lactate/pyruvate (LP) ratio <30 was considered indicating normal oxidative metabolism, LP ratio >30 simultaneously with pyruvate below lower normal level (70 µmol/L) was interpreted as biochemical indication of ischemia, and LP ratio >30 simultaneously with a normal or increased level of pyruvate was interpreted as mitochondrial dysfunction. The biochemical variables were compared with PbtO2 simultaneously monitored within the same cerebral region. RESULTS: In two cases, the LP ratio was normal during the whole study period and the simultaneously monitored PbtO2 was 18 ± 6 mm Hg. In six cases, interpreted as mitochondrial dysfunction, the simultaneously monitored PbtO2 was 20 ± 6 mm Hg and without correlation with the LP ratio. In one patient, exhibiting a pattern interpreted as ischemia, PbtO2 decreased below 10 mm Hg and a correlation between LP and PbtO2 was observed. CONCLUSION: This study demonstrated that compromised cerebral energy metabolism, evidenced by increased LP ratio, was common in patients with severe bacterial meningitis while not related to insufficient tissue oxygenation.


Subject(s)
Brain Chemistry , Cytoplasm/metabolism , Meningitis, Pneumococcal/metabolism , Oxygen Consumption , Aged , Aged, 80 and over , Blood Gas Analysis , Brain Ischemia/etiology , Brain Ischemia/metabolism , Cohort Studies , Energy Metabolism , Female , Humans , Intracranial Pressure , Lactic Acid/metabolism , Male , Middle Aged , Mitochondria/metabolism , Oxidation-Reduction , Prospective Studies , Pyruvic Acid/metabolism , Treatment Outcome
18.
Am J Gastroenterol ; 113(11): 1701-1710, 2018 11.
Article in English | MEDLINE | ID: mdl-30323268

ABSTRACT

OBJECTIVES: Digestive diseases account for >100 million ambulatory care visits annually in the U.S. Yet, comparatively less is known about the true burden of gastrointestinal (GI) symptoms in the general U.S. POPULATION: The aim of this study was to use data from the "National GI Survey"-a population-based audit of GI symptoms in >71,000 participants-to determine the prevalence and predictors of GI symptoms in community-dwelling Americans. METHODS: We conducted the National GI Survey using a mobile app called MyGiHealth, which employs a computer algorithm that systematically collects participants' GI symptoms. We recruited a nationally representative sample of Americans to complete the survey, which guided respondents through National Institutes of Health (NIH) GI Patient Reported Outcome Measurement Information System (PROMIS®) scales along with questions about relevant comorbidities and demographics. We measured the prevalence of GI symptoms in the past week and employed logistic regression to adjust for confounding. RESULTS: Overall, 71,812 individuals completed the survey, of which 61% reported having had ≥1 GI symptom in the past week. The most commonly reported symptoms were heartburn/reflux (30.9%), abdominal pain (24.8%), bloating (20.6%), diarrhea (20.2%), and constipation (19.7%). Less common symptoms were nausea/vomiting (9.5%), dysphagia (5.8%), and bowel incontinence (4.8%). Females, non-Hispanic whites, and individuals who were younger, highly educated, and had medical comorbidities were more likely to have symptoms (all adjusted p < 0.05). CONCLUSIONS: In this large population-based study that combined digital health technology with NIH PROMIS questionnaires, we found that GI symptoms are highly prevalent, as nearly two thirds of surveyed Americans are burdened by these symptoms.


Subject(s)
Gastrointestinal Diseases/epidemiology , Health Surveys/statistics & numerical data , Patient Reported Outcome Measures , Adult , Aged , Cross-Sectional Studies , Female , Health Surveys/methods , Humans , Male , Middle Aged , Mobile Applications , Prevalence , Retrospective Studies , United States/epidemiology , Young Adult
19.
Ugeskr Laeger ; 180(30)2018 Jul 23.
Article in Danish | MEDLINE | ID: mdl-30037384

ABSTRACT

The neurointensive care field emerged as a separate medical speciality in the 1980s, driven by the development of new monitoring tools. The most important goal of neurointensive care is avoiding secondary brain injuries or detecting them in time to implement effective treatment. Understanding cerebral metabolism is key in the care of neurocritical patients, and continuous monitoring through intracerebral microdialysis allows for differentiation of different pathological mechanisms, in turn catalysing development of novel treatments.


Subject(s)
Brain , Neurophysiological Monitoring/methods , Brain/metabolism , Brain/physiopathology , Brain Injuries/metabolism , Brain Injuries/physiopathology , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Cerebrovascular Circulation/physiology , Humans , Intracranial Pressure/physiology , Lactic Acid/metabolism , Microdialysis , Mitochondria/metabolism , Mitochondria/pathology , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...