Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9296, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654022

ABSTRACT

Hemichordata has always played a central role in evolutionary studies of Chordata due to their close phylogenetic affinity and shared morphological characteristics. Hemichordates had no meiofaunal representatives until the surprising discovery of a microscopic, paedomorphic enteropneust Meioglossus psammophilus (Harrimaniidae, Hemichordata) from the Caribbean in 2012. No additional species have been described since, questioning the broader distribution and significance of this genus. However, being less than a millimeter long and superficially resembling an early juvenile acorn worm, Meioglossus may easily be overlooked in both macrofauna and meiofauna surveys. We here present the discovery of 11 additional populations of Meioglossus from shallow subtropical and tropical coralline sands of the Caribbean Sea, Red Sea, Indian Ocean, and East China Sea. These geographically separated populations show identical morphology but differ genetically. Our phylogenetic reconstructions include four gene markers and support the monophyly of Meioglossus. Species delineation analyses revealed eight new cryptic species, which we herein describe using DNA taxonomy. This study reveals a broad circumtropical distribution, supporting the validity and ecological importance of this enigmatic meiobenthic genus. The high cryptic diversity and apparent morphological stasis of Meioglossus may exemplify a potentially common evolutionary 'dead-end' scenario, where groups with highly miniaturized and simplified body plan lose their ability to diversify morphologically.


Subject(s)
Phylogeny , Animals , Caribbean Region , Indian Ocean
2.
Toxins (Basel) ; 15(11)2023 11 12.
Article in English | MEDLINE | ID: mdl-37999513

ABSTRACT

Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.


Subject(s)
Toxins, Biological , Venoms , Animals , Venoms/genetics , Gene Duplication , Transcriptome , Gene Expression Profiling , Phylogeny , Evolution, Molecular
3.
Zookeys ; 1181: 167-200, 2023.
Article in English | MEDLINE | ID: mdl-37841031

ABSTRACT

The marine ribbon worm genus Tetranemertes Chernyshev, 1992 currently includes three species: the type species T.antonina (Quatrefages, 1846) from the Mediterranean Sea, T.rubrolineata (Kirsteuer, 1965) from Madagascar, and T.hermaphroditica (Gibson, 1982) from Australia. Seven new species are described: T.bifrostsp. nov., T.ocelatasp. nov., T.majinbuuisp. nov., and T.pastafariensissp. nov. from the Caribbean Sea (Panamá), and three species, T.unistriatasp. nov., T.paulayisp. nov., and T.arabicasp. nov., from the Indo-West Pacific (Japan and Oman). As a result, an amended morphological diagnosis of the genus is offered. To improve nomenclatural stability, a neotype of Tetranemertesantonina is designated from the Mediterranean. The newly described species, each characterized by features of external appearance and stylet apparatus, as well as by DNA-barcodes, form a well-supported clade with T.antonina on a molecular phylogeny of monostiliferan hoplonemerteans based on partial sequences of COI, 16S rRNA, 18S rRNA, and 28S rRNA. Six of the seven newly described species, as well as T.rubrolineata, possess the unusual character of having a central stylet basis slightly bilobed to deeply forked posteriorly in fully grown individuals, a possible morphological synapomorphy of the genus. In addition, an undescribed species of Tetranemertes is reported from the Eastern Tropical Pacific (Panamá), increasing the total number of known species in the genus to eleven.

4.
Environ Monit Assess ; 195(4): 514, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36973586

ABSTRACT

The underexplored intertidal ecosystems of Antarctica are facing rapid changes in important environmental factors. Associated with temperature increase, reduction in coastal ice will soon expose new ice-free areas that will be colonized by local or distant biota. To enable detection of future changes in faunal composition, a biodiversity baseline is urgently required. Here, we evaluated intertidal faunal diversity at 13 locations around the Gerlache Strait (western Antarctic Peninsula), using a combination of a quadrat approach, morphological identification and genetic characterization. Our data highlight a community structure comprising four generally distributed and highly abundant species (the flatworm Obrimoposthia wandeli, the bivalve Kidderia subquadrata, and the gastropods Laevilitorina umbilicata and Laevilitorina caliginosa) as well as 79 rarer and less widely encountered species. The most abundant species thrive in the intertidal zone due to their ability to either survive overwinter in situ or to rapidly colonize this zone when conditions allow. In addition, we confirmed the presence of multiple trophic levels at nearly all locations, suggesting that complex inter-specific interactions occur within these communities. Diversity indices contrasted between sampling locations (from 3 to 32 species) and multivariate approaches identified three main groups. This confirms the importance of environmental heterogeneity in shaping diversity patterns within the investigated area. Finally, we provide the first genetic and photographic baseline of the Antarctic intertidal fauna (106 sequences, 137 macrophotographs), as well as preliminary insights on the biogeography of several species. Taken together, these results provide a timely catalyst to assess the diversity and to inform studies of the potential resilience of these intertidal communities.


Subject(s)
Bivalvia , Ecosystem , Animals , Antarctic Regions , Environmental Monitoring , Biodiversity
5.
Biol Lett ; 18(4): 20210596, 2022 04.
Article in English | MEDLINE | ID: mdl-35414224

ABSTRACT

Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions-Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific-we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.


Subject(s)
Biodiversity , Ecosystem , Animals , Caribbean Region , DNA , DNA Barcoding, Taxonomic , Larva/genetics
6.
Biodivers Data J ; 9: e69955, 2021.
Article in English | MEDLINE | ID: mdl-34720635

ABSTRACT

BACKGROUND: The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known.In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. NEW INFORMATION: This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.

8.
Methods Mol Biol ; 2219: 289-305, 2021.
Article in English | MEDLINE | ID: mdl-33074549

ABSTRACT

Miniaturization, which is a common feature in animals, is particularly manifest in meiofauna-animals sharing peculiar phenotypic features that evolved as adaptations to the highly specialized aquatic interstitial habitat. While revealing much about the extreme phyletic diversity of meiofauna, the genome structure of meiofaunal species could also characterize the phenotype of ancestral states as well as explain the origin and evolution of miniaturization. Here, we present a practical bioinformatics tutorial for genome assembly, genome comparison, and characterization of Hox clusters in meiofaunal species.


Subject(s)
Genomics/methods , Animals , Biodiversity , Biological Evolution , Computational Biology/methods , Ecosystem , Genes, Homeobox , Genome , Genome Components , Phylogeny , Software
9.
Zootaxa ; 4881(3): zootaxa.4881.3.3, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33311301

ABSTRACT

Eight new species of Duplominona (Platyhelminthes, Proseriata, Monocelididae) are described from the Pacific coast of Panama. They differ from their congeners in the detailed morphology of hard structures associated with the copulatory organ. Duplominona basidilatata n. sp. has a cirrus provided with 5-6 rows of triangular spines, 3-8 µm long, with a large, flat, poorly sclerotized basis. D. hystricina n. sp. has 10-12 rows of needle-shaped spines, 3.5-15 µm long, with a swollen basis. The cirrus of D. hyperhystricina n. sp. is provided with 20-25 rows of slender spines 1.5-9 µm long, with a recurved distal tip. In D. veracruzensis n. sp., cirrus spines increase abruptly in size, from 1.5-2 µm to 6-7 µm. D. uniserta n. sp. has a very long seminal vesicle and a small cirrus, provided with one girdle of hook-shaped spines, 3-5 µm long. D. macrodon n. sp. has one girdle of large, triangular spines, 8-18 µm long. Both D. trimera n. sp. and D. pseudotrimera n. sp. have a tripartite tail, and their cirrus is provided with a stylet. In D. trimera n. sp., the stylet is surrounded by 15-20 rows of spines, 6.5-10 µm long, while D. pseudotrimera n. sp. has 6-8 rows of large spines, 7-22 µm long. D. uniserta n. sp. and D. aduncospina Curini-Galletti, 2019 from the Caribbean coast of Panama have few rows of morphologically nearly identical spines, and are possible candidates as trans-isthmian geminate species. The presence of species with a tripartite tail on both sides of the Isthmus of Panama suggests the possibility of further geminate species pairs; however, no support could be obtained on the basis of the morphology of their hard structures. Five of the eight new species of Duplominona have been found in a single locality, and the diversity of genus along the Pacific coast of Panama may be far higher than present contribution suggests.


Subject(s)
Perciformes , Platyhelminths , Animals , Panama
10.
Zookeys ; 968: 1-42, 2020.
Article in English | MEDLINE | ID: mdl-33005079

ABSTRACT

Caecidae is a species-rich family of microsnails with a worldwide distribution. Typical for many groups of gastropods, caecid taxonomy is largely based on overt shell characters. However, identification of species using shell characteristics is problematic due to their rather uniform, tubular shells, the presence of different growth stages, and a high degree of intraspecific variability. In the present study, a first integrative approach to caecid taxonomy is provided using light-microscopic investigation with microsculptural analyses and multi-marker barcoding, in conjunction with molecular species delineation analyses (ABGD, haplotype networks, GMYC, and bPTP). In total 132 specimens of Caecum and Meioceras collected during several sampling trips to Central America were analyzed and delineated into a minimum of 19 species to discuss putative synonyms, and supplement the original descriptions. Molecular phylogenetic analyses suggest Meioceras nitidum and M. cubitatum should be reclassified as Caecum, and the genus Meioceras might present a junior synonym of Caecum. Meiofaunal caecids morphologically resembling C. glabrum from the Northeast Atlantic are a complex of cryptic species with independent evolutionary origins, likely associated with multiple habitat shifts to the mesopsammic environment. Caecum invisibile Egger & Jörger, sp. nov. is formally described based on molecular diagnostic characters. This first integrative approach towards the taxonomy of Caecidae increases the known diversity, reveals the need for a reclassification of the genus Caecum and serves as a starting point for a barcoding library of the family, thereby enabling further reliable identifications of these taxonomically challenging microsnails in future studies.

11.
Zootaxa ; 4808(2): zootaxa.4808.2.10, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-33055983

ABSTRACT

A new species of the genus Tetrastemma Ehrenberg, 1831, T. freyae sp. nov., is described and illustrated from Hawaii and India. The description is based on light microscopy examination of the external and internal morphology, as well as on two gene markers (cytochrome c oxidase subunit I and histone H3 DNA).


Subject(s)
Acanthocephala , Animals , DNA , Hawaii , India
12.
Zootaxa ; 4691(4): zootaxa.4691.4.2, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31719386

ABSTRACT

The heteronemertean genus Dushia Corrêa, 1963 was established for what was identified as D. atra (Girard, 1851) (originally Meckelia atra) based on material from littoral, shallow waters in Curaçao, while the nominal species Meckelia atra was originally described from deep water off Florida Cape. In this paper, we conclude that the type species for Dushia has been misidentified. Based on specimens from the Caribbean, we establish D. wijnhoffae Schwartz Norenburg sp. nov. to represent the true identity of the genus, according to Article 70.3.2 of the International Code of Zoological Nomenclature; Meckelia atra should be regarded as a nomen dubium. While the genus has remained monotypic since its establishment, our molecular analysis discovered a second member-or rather a group of members-from the West Pacific. This 'group of members', herein termed Dushia nigra (Stimpson, 1855) species complex comb. nov., involves i) at least two genetically separated biological entities, 0.136-0.148 (p-distance) and 0.152-0.168 (K2P) apart in terms of 513-bp COI sequences, which we interpret as likely to represent cryptic species, ii) three color forms, orange, brown, and black, with the last one occurring most frequently, and iii) four nominal species, Meckelia nigra Stimpson, 1855 (now Cerebratulus niger), Meckelia rubella Stimpson, 1855 (now Cerebratulus rubellus), Micrura formosana Yamaoka, 1939, and Micrura japonica Iwata, 1952. At present, however, we have no objective ground as to which of the four potentially available names (i.e., formosana, japonica, nigra, and rubella) should be allotted to the two cryptic species discovered in the analysis, because i) a single locality can harbor two cryptic species, ii) a single cryptic species may contain three different color morphs (i.e., orange, brown, black), and iii) no data from the type localities for these four nominal species are available at the moment. Our multi-locus analysis of heteronemerteans-for which 16S rRNA, COI, 18S rRNA, 28S rRNA, histone H3 genes are available in public databases-shows that Dushia wijnhoffae sp. nov. and Dushia nigra species complex comb. nov. form a clade, which is closely related to Gorgonorhynchus albocinctus Kajihara, 2015 and an undetermined heteronemertean that has been misidentified as Cerebratulus leucopsis (Coe, 1901). Members of Dushia thus show a vicariant Caribbean-West-Pacific distribution, indicating that the lineage predates the rise of the Isthmus of Panama.


Subject(s)
Invertebrates , Animals , Caribbean Region , Curacao , Florida , Invertebrates/genetics , Panama , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , West Indies
13.
Zootaxa ; 4657(1): zootaxa.4657.1.5, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31716799

ABSTRACT

Nine new species of Duplominona and one new Pseudominona (Platyhelminthes, Proseriata, Monocelididae) are described from the Caribbean coast of Panama and from Puerto Rico.                Duplominona aduncospina n. sp.; D. terdigitata n. sp.; D. pusilla n. sp.; D. bocasana n. sp. (from Panama) and D. dissimilispina n. sp.; D. chicomendesi n. sp.; D. macrocirrus n. sp.; D. diademata n. sp.; D. puertoricana n. sp. (from Puerto Rico) can be distinguished from the numerous congeneric species based on fine details of the sclerotized structures of the copulatory organ. Duplominona aduncospina n. sp. is characterised by a cirrus provided with 3-4 rows of recurve spines, 2-3 µm long. D. terdigitata n. sp. shows a tripartite tail, and needle-shaped cirrus spines, 1.5-9 µm long. Cirrus spines of D. pusilla n. sp. are scale-like, 1.5-3 µm long. D. bocasana n. sp. has triangular spines, 1.5-6 µm long. D. dissimilispina n. sp. has needle-shaped spines, 3.5-15 µm long. D. chicomendesi n. sp. has a small cirrus, with few, strongly curved spines, 2-7.5 µm long. D. macrocirrus n. sp. has a large cirrus, provided with spines 3-9 µm long, with the longest spines placed medially. D. diademata n. sp. has a cirrus with two separate spiny areas, with spines 7-13 µm long. D. puertoricana n. sp. has a very long cirrus, with poorly sclerotised proximal spines, and distal spines to 6 µm long. A taxonomic key of the genus Duplominona is provided. Pseudominona cancan n. sp. from Panama differs from P. dactylifera from Bermuda, the only species known in the genus so far, for its shorter cirrus and fewer, triangular spines 3-5 µm long, and for the position of the vagina, close to mouth. A specimen attributed to P. dactylifera collected in Puerto Rico is described. Distribution of the new species suggests a complete separation of Panamanian and Puerto Rican proseriate fauna, confirming previous reports of restricted ranges and high endemicity of mesopsammic Platyhelminthes.


Subject(s)
Platyhelminths , Animals , Bermuda , Female , Panama , Puerto Rico , West Indies
14.
Proc Biol Sci ; 286(1898): 20182524, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30836873

ABSTRACT

Animals vary widely in their ability to regenerate, suggesting that regenerative ability has a rich evolutionary history. However, our understanding of this history remains limited because regenerative ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We assessed ability to regenerate heads and tails either through our own experiments or from literature reports for 35 species of Nemertea spanning the diversity of the phylum, including representatives of 10 families and all three orders. We generated a phylogenetic framework using sequence data to reconstruct the evolutionary history of head and tail regenerative ability across the phylum and found that all evaluated species can remake a posterior end but surprisingly few could regenerate a complete head. Our analysis reconstructs a nemertean ancestor unable to regenerate a head and indicates independent gains of head regenerative ability in at least four separate lineages, with one of these gains taking place as recently as the last 10-15 Myr. Our study highlights nemerteans as a valuable group for studying evolution of regeneration and identifying mechanisms associated with repeated gains of regenerative ability.


Subject(s)
Invertebrates/physiology , Regeneration , Animals , Biological Evolution , Head/physiology , Species Specificity
16.
Commun Biol ; 1: 112, 2018.
Article in English | MEDLINE | ID: mdl-30271992

ABSTRACT

Accurate assessments of biodiversity are crucial to advising ecosystem-monitoring programs and understanding ecosystem function. Nevertheless, a standard operating procedure to assess biodiversity accurately and consistently has not been established. This is especially true for meiofauna, a diverse community (>20 phyla) of small benthic invertebrates that have fundamental ecological roles. Recent studies show that metabarcoding is a cost-effective and time-effective method to estimate meiofauna biodiversity, in contrast to morphological-based taxonomy. Here, we compare biodiversity assessments of a diverse meiofaunal community derived by applying multiple taxonomic methods based on comparative morphology, molecular phylogenetic analysis, DNA barcoding of individual specimens, and metabarcoding of environmental DNA. We show that biodiversity estimates are strongly biased across taxonomic methods and phyla. Such biases affect understanding of community structures and ecological interpretations. This study supports the urgency of improving aspects of environmental high-throughput sequencing and the value of taxonomists in correctly understanding biodiversity estimates.

17.
PLoS One ; 13(4): e0195833, 2018.
Article in English | MEDLINE | ID: mdl-29698411

ABSTRACT

Ototyphlonemertes is a cosmopolitan genus of meiofaunal nemerteans. Their morphological characters are insufficient to reliably identify and delimit species. Consequently, some of the species are considered cosmopolitan despite anticipated low dispersion capability of the adults and a short planktonic larval phase. Indeed, recent studies show that some species actually comprise cryptic species, and populations are connected by stochastic events of long-distance dispersion. Based solely on morphological traits, a Lactea and a Pallida morph of Ototyphlonemertes are recognized here from collections at eight and five locations respectively along the Chilean coast. To assess the phylogeographic patterns of their populations, two mitochondrial markers (COI and COX3) of 162 specimens of Lactea and 25 of Pallida were sequenced. Final sequences are 605bp and 362bp for COI and COX3, respectively. Results from phylogenetic and haplotype network analyses suggest that the Lactea morph comprises up to three independent evolutionary units (one with only COX3 sequences). A COI gene tree including other previously published Ototyphlonemertes sequences groups the Chilean Lactea with other Lactea, while the Chilean Pallida is grouped with other Pallida. Different structuring and gene flow patterns found for the four groups support the hypothesis that these are four independent evolutionary entities with different ecological, dispersal and demographical characteristics.


Subject(s)
Acanthocephala/genetics , Genetic Variation , Acanthocephala/classification , Animals , Chile , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Gene Flow , Haplotypes , Phylogeny , Phylogeography , Sequence Analysis, DNA
18.
Zootaxa ; 4061(2): 146-56, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-27395488

ABSTRACT

Of 45 species of nemerteans reported for the Brazilian coast, only two were recorded from Brazil's Northeast coast. Here we report seven new records for the state of Ceará, in Northeast Brazil: Tubulanus rhabdotus Côrrea, 1954, Carinomella cf. lactea Coe, 1905, Baseodiscus delineatus (Delle-Chiaje 1825), Cerebratulus cf. lineolatus Coe, 1905, Cerebratulus sp. 1, Cerebratulus sp. 2 and Lineidae sp. 1. Specimens were collected at the following beaches: Praia dos Dois Coqueiros, Praia do Pacheco, Pecém harbor, Praia da Pedra Rachada and Praia do Guajiru. T. rhabdotus is a new record for Northeast Brazil, Carinomella cf. lactea and Cerebratulus cf. lineolatus are new records for the South Atlantic Ocean and both genera are new records for Brazil.


Subject(s)
Acanthocephala/classification , Acanthocephala/anatomy & histology , Acanthocephala/growth & development , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Atlantic Ocean , Body Size , Brazil , Ecosystem , Female , Male , Organ Size
19.
Mol Ecol ; 25(6): 1381-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26840255

ABSTRACT

Most meiofaunal species are known to have a broad distribution with no apparent barriers to their dispersion. However, different morphological and/or molecular methods supported patterns of diversity and distribution that may be different among taxa while also conflicting within the same group. We accurately assessed the patterns of geographic distribution in actual genetic species of a marine meiofaunal animal model: Ototyphlonemertes. Specimens were collected from several sites around Europe, Northern and Central America, Southern America, Pacific Islands and Asia. We sequenced regions of two mitochondrial and two nuclear genes. Using single-gene, a concatenated data set, multilocus approaches and different DNA taxonomy methods, we disentangled the actual diversity and the spatial structures of haplotypes and tested the possible correlation between genetic diversity and geographic distance. The results show (i) the importance of using several genes to uncover both diversity and highlight phylogeographic relationships among species and that (ii) independent genetic evolutionary entities have a narrower distribution than morphological species. Moreover, (iii) a Mantel test supported a positive correlation between genetic and geographical distance. By sampling from the two sides of Isthmus of Panama, we were additionally able to identify lineage divergence times that are concordant with vicariance mechanisms caused by the geological closure of the seaway across the Isthmus. We therefore propose that in addition to distance, other geological and ecological conditions are also barriers to the dispersion of and gene flow in marine meiofaunal organisms.


Subject(s)
Animal Distribution , Genetic Variation , Invertebrates/classification , Phylogeny , Animals , Aquatic Organisms/classification , Aquatic Organisms/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Haplotypes , Invertebrates/genetics , Models, Genetic , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
20.
Zookeys ; (439): 83-108, 2014.
Article in English | MEDLINE | ID: mdl-25317057

ABSTRACT

A checklist of benthic ribbon worm species from the Caribbean coast of Colombia is presented, including synonyms, distributions, a photographic record, and the main morphologic characters of each species for a rapid identification. This is the first research focused broadly on nemerteans in Colombia. 54 specimens of nemerteans were hand-collected from the rocky littoral of two different localities, and identified according to personal experience and specialist literature. 13 species were found; of which 11 represent new records for the country. These species belong to eight different traditionally used families: Tubulanidae, Valenciniidae, Lineidae, Amphiporidae, Cratenemertidae, Emplectonematidae, Drepanophoridae and Ototyphlonemertidae. The most common and abundant species was Dushia atra. The biodiversity of nemerteans in Colombia seems to overlap with the nemertean fauna from Florida and Brazil, explained by the convergence of the North Brazil Current, Guiana Current, Caribbean Currents and the Panama-Colombia Contracurrent in the sampled region. The results of this work suggest that the Caribbean coast of Colombia is a region with a high diversity of nemerteans, and provide important taxonomic data for environmental assessments and future biological research.

SELECTION OF CITATIONS
SEARCH DETAIL
...