Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 201(3): 863-875, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36914820

ABSTRACT

Large-scale deforestation in the tropics, triggered by logging and subsequent agricultural monoculture has a significant adverse impact on biodiversity due to habitat degradation. Here, we measured the diversity of butterfly species in three agricultural landscapes, agroforestry orchards, oil palm, and rubber tree plantations. Butterfly species were counted at 127 sampling points over the course of a year using the point count method. We found that agroforestry orchards supported a greater number of butterfly species (74 species) compared to rubber tree (61 species) and oil palm plantations (54 species) which were dominated by generalist (73%) followed by forest specialists (27%). We found no significant difference of butterfly species composition between agroforestry orchards and rubber tree plantation, with both habitats associated with more butterfly species compared to oil palm plantations. This indicates butterflies were able to persist better in certain agricultural landscapes. GLMMs suggested that tree height, undergrowth coverage and height, and elevation determined butterfly diversity. Butterfly species richness was also influenced by season and landscape-level variables such as proximity to forest, mean NDVI, and habitat. Understanding the factors that contributed to butterfly species richness in an agroecosystem, stakeholders should consider management practices to improve biodiversity conservation such as ground vegetation management and retaining adjacent forest areas to enhance butterfly species richness. Furthermore, our findings suggest that agroforestry system should be considered to enhance biodiversity in agricultural landscapes.


Subject(s)
Butterflies , Animals , Ecosystem , Biodiversity , Forests , Agriculture , Conservation of Natural Resources
2.
Ecol Evol ; 12(3): e8745, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342579

ABSTRACT

Due to rapid urbanization, logging, and agricultural expansion, forest fragmentation is negatively affecting native wildlife populations throughout the tropics. This study examined the effects of landscape and habitat characteristics on the lesser mouse-deer, Tragulus kanchil, populations in Peninsular Malaysia. We conducted camera-trap survey at 315 sampling points located within 8 forest reserves. An assessment of site-level and landscape variables was conducted at each sampling point. Our study provides critical ecological information for managing and conserving understudied populations of T. kanchil. We found that the detection of T. kanchil was attributed to forest fragmentation in which forest patches had four times greater detection of T. kanchil than continuous forest. The detection of T. kanchil was nearly three times higher in peat swamp forest compared to lowland dipterocarp forests. Surprisingly, the detection of T. kanchil was higher in logged forests (logging ceased at least 30 years ago) than unlogged forests. The detection of T. kanchil increased with the presence of trees, particularly those with DBH of 5 cm to 45 cm, canopy cover, number of saplings and palms, number of dead fallen trees, and distance from nearest roads. However, detection decreased with a greater number of trees with DBH greater than 45 cm and higher elevations, and greater detections where creeping bamboo was abundant. We recommend that conservation stakeholders take the necessary steps (e.g., eradicating poaching, habitat degradation, and further deforestation) to support the conservation of mouse-deer species and its natural habitats.

3.
Ecol Evol ; 10(2): 654-661, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32015833

ABSTRACT

In human-modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land-use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape-scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land-use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land-use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land-use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.

4.
Insect Sci ; 24(2): 285-294, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26712127

ABSTRACT

Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service.


Subject(s)
Arecaceae , Moths , Pest Control, Biological/methods , Reduviidae , Animals , Ecosystem , Malaysia , Predatory Behavior
5.
Springerplus ; 2(1): 9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23419805

ABSTRACT

Wood products are highly exposed to infestation by powder post beetles. Dinoderus minutus (bamboo borer) is a wood boring beetle that seriously damage dried bamboo and finished bamboo products. Management of D. minutus using pesticides showed negative effects on environment despite being very costly. By understanding influence of natural climatic conditions on their reproductive behaviour, could help us to develop a cost effective and environmental friendly strategy to cope up with this problem. In the present study, reproductive parameters and egg development of the bamboo borer were determined at 20%, 40%, 56%, 75% and 85% r.h. levels at constant temperature of 30° ± 2°C with 8 L-16D photoregime. From the results, eclosion to first instar larva was recorded at all relative humidities tested. The lowest shortest percentage of hatchability was recorded at 20% and 85% relative humidity with a mean incubation period of 4.63 ± 0.25 and 10.43 ± 0.32 days, respectively. It was noted that pre-ovipositional period decreased from 14.20 ± 0.49 to 7.20 ± 0.31 days as relative humidity increased from 20% to 75% and slightly increased to 8.00 ± 0.37 days at 85% relative humidity. We conclude that female beetles may have a particular hygropreference in oviposition as total egg production increased with increasing relative humidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...