Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 14(20): 4076-84, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25177916

ABSTRACT

Considerable effort has recently been directed toward the miniaturization of quantitative-polymerase-chain-reaction (qPCR) instrumentation in an effort to reduce both cost and form factor for point-of-care applications. Considerable gains have been made in shrinking the required volumes of PCR reagents, but resultant prototypes retain their bench-top form factor either due to heavy heating plates or cumbersome optical sensing instrumentation. In this paper, we describe the use of complementary-metal-oxide semiconductor (CMOS) integrated circuit (IC) technology to produce a fully integrated qPCR lab-on-chip. Exploiting a 0.35 µm high-voltage CMOS process, the IC contains all of the key components for performing qPCR. Integrated resistive heaters and temperature sensors regulate the surface temperature of the chip to an accuracy of 0.45 °C. Electrowetting-on-dielectric microfluidics are actively driven from the chip surface, allowing for droplet generation and transport down to volumes less than 1.2 nanoliter. Integrated single-photon avalanche diodes (SPADs) are used for fluorescent monitoring of the reaction, allowing for the quantification of target DNA with more than four-orders-of-magnitude of dynamic range and sensitivities down to a single copy per droplet. Using this device, reliable and sensitive real-time proof-of-concept detection of Staphylococcus aureus (S. aureus) is demonstrated.


Subject(s)
Aluminum Oxide/chemistry , DNA/genetics , Lab-On-A-Chip Devices , Point-of-Care Systems , Polymerase Chain Reaction , Staphylococcus aureus/isolation & purification , Particle Size , Polymerase Chain Reaction/instrumentation , Semiconductors , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...