Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(3): 505-518.e6, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38215744

ABSTRACT

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.


Subject(s)
Drosophila melanogaster , Juvenile Hormones , Humans , Mice , Animals , Germ Cells , Drosophila , Gonads , Terpenes , Cell Movement , Mammals
2.
Insect Biochem Mol Biol ; 142: 103721, 2022 03.
Article in English | MEDLINE | ID: mdl-35007710

ABSTRACT

Diapause is one of the major strategies for insects to prepare for and survive harsh seasons. In females, the absence of juvenile hormone (JH) is a hallmark of adult reproductive diapause, a developmental arrest, which is much less characterized in males. Here we show that juvenile hormone III skipped bisepoxide (JHSB3) titers in hemolymph remarkably differ between reproductive males and females of the linden bug Pyrrhocoris apterus, whereas no JH was detected in diapausing adults of both sexes. Like in females, ectopic application of JH mimic effectively terminated male diapause through the canonical JH receptor components, Methoprene-tolerant and Taiman. In contrast to females, long photoperiod induced reproduction even in males with silenced JH reception or in males with removed corpus allatum (CA), the JH-producing gland. JHSB3 was detected in the accessory glands (MAG) of reproductive males, unexpectedly, even in males without CA. If there is a source of JHSB3 outside CA or a long-term storage of JHSB3 in MAGs remains to be elucidated. These sex-related idiosyncrasies are further manifested in different dynamics of diapause termination in P. apterus by low temperature. We would like to propose that this sexual dimorphism of diapause regulation might be explained by the different reproductive costs for each sex.


Subject(s)
Diapause, Insect , Diapause , Heteroptera , Animals , Corpora Allata , Female , Heteroptera/physiology , Juvenile Hormones , Male , Methoprene , Reproduction , Sex Characteristics
3.
Gen Comp Endocrinol ; 278: 79-88, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30543770

ABSTRACT

Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.


Subject(s)
Arthropod Antennae/innervation , Courtship , Drosophila melanogaster/physiology , Interneurons/physiology , Receptors, Peptide/metabolism , Sexual Behavior, Animal/physiology , Animals , Central Nervous System/metabolism , Down-Regulation/genetics , Female , Gene Expression Regulation , Gene Ontology , Male , RNA Interference , Receptors, Peptide/genetics
4.
Curr Biol ; 27(18): 2798-2809.e3, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28918947

ABSTRACT

Formation and expression of memories are critical for context-dependent decision making. In Drosophila, a courting male rejected by a mated female subsequently courts less avidly when paired with a virgin female, a behavioral modification attributed to "courtship memory." Here we show the critical role of hormonal state for maintenance of courtship memory. Ecdysis-triggering hormone (ETH) is essential for courtship memory through regulation of juvenile hormone (JH) levels in adult males. Reduction of JH levels via silencing of ETH signaling genes impairs short-term courtship memory, a phenotype rescuable by the JH analog methoprene. JH-deficit-induced memory impairment involves rapid decay rather than failure of memory acquisition. A critical period governs memory performance during the first 3 days of adulthood. Using sex-peptide-expressing "pseudo-mated" trainers, we find that robust courtship memory elicited in the absence of aversive chemical mating cues also is dependent on ETH-JH signaling. Finally, we find that JH acts through dopaminergic neurons and conclude that an ETH-JH-dopamine signaling cascade is required during a critical period for promotion of social-context-dependent memory.


Subject(s)
Drosophila melanogaster/physiology , Insect Hormones/metabolism , Juvenile Hormones/metabolism , Memory , Sexual Behavior, Animal , Animals , Courtship , Male , Signal Transduction
5.
Proc Natl Acad Sci U S A ; 114(19): E3849-E3858, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439025

ABSTRACT

Ecdysis-triggering hormone (ETH) was originally discovered and characterized as a molt termination signal in insects through its regulation of the ecdysis sequence. Here we report that ETH persists in adult Drosophila melanogaster, where it functions as an obligatory allatotropin to promote juvenile hormone (JH) production and reproduction. ETH signaling deficits lead to sharply reduced JH levels and consequent reductions of ovary size, egg production, and yolk deposition in mature oocytes. Expression of ETH and ETH receptor genes is in turn dependent on ecdysone (20E). Furthermore, 20E receptor knockdown specifically in Inka cells reduces fecundity. Our findings indicate that the canonical developmental roles of 20E, ETH, and JH during juvenile stages are repurposed to function as an endocrine network essential for reproductive success.


Subject(s)
Endocrine System/metabolism , Insect Hormones/metabolism , Receptors, Peptide/metabolism , Signal Transduction/physiology , Animals , Drosophila melanogaster , Female , Insect Hormones/genetics , Juvenile Hormones/genetics , Juvenile Hormones/metabolism , Male , Neuropeptides/genetics , Neuropeptides/metabolism , Receptors, Peptide/genetics , Reproduction/physiology
6.
Gen Comp Endocrinol ; 233: 1-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27174746

ABSTRACT

Haematophagous insects can ingest large quantities of blood in a single meal producing a large quantity of urine in the following hours to eliminate the excess of water and mineral ions incorporated. The excretory activity of the Malpighian tubules is facilitated by an increase in haemolymph circulation as a result of the intensification of aorta contractions, combined with an increase of anterior midgut peristaltic waves. We have recently shown that haemolymph circulation during post-prandial diuresis is modulated by the synergistic activity of allatotropin (AT) and serotonin, resulting in an increase in aorta and crop contraction rates. In the present study we describe the antagonistic effect of allatostatin-C (AST-C) on the increase of aorta frequency of contractions induced by serotonin/AT in Rhodnius prolixus. The administration of AST-C counteracted the increase in the frequency induced by the treatment with serotonin/AT, but did not affect the increase in frequency induced by the administration of serotonin alone, suggesting that AST-C is altering the synergism between serotonin and AT. Furthermore, the administration of AST-C during post-prandial diuresis decreases the number of peristaltic waves of the anterior midgut. The AST-C putative receptor is expressed in the hindgut, midgut and dorsal vessel, three critical organs involved in post-prandial diuresis. All together these findings provide evidence that AST-C plays a key role as a myoregulatory and cardioregulatory peptide in R. prolixus.


Subject(s)
Insect Hormones/antagonists & inhibitors , Muscle Contraction/drug effects , Neuropeptides/antagonists & inhibitors , Neuropeptides/pharmacology , Rhodnius , Serotonin Antagonists/pharmacology , Serotonin/pharmacology , Animals , Aorta/drug effects , Aorta/physiology , Diuresis/drug effects , Drug Interactions , Female , Insect Hormones/pharmacology , Malpighian Tubules/drug effects , Malpighian Tubules/metabolism , Myocardial Contraction/drug effects , Postprandial Period/drug effects , Rhodnius/drug effects , Rhodnius/physiology
7.
PLoS One ; 10(4): e0124131, 2015.
Article in English | MEDLINE | ID: mdl-25897783

ABSTRACT

Haematophagous insects can ingest large quantities of blood in a single meal and eliminate high volumes of urine in the next few hours. This rise in diuresis is possible because the excretory activity of the Malpighian tubules is facilitated by an increase in haemolymph circulation as a result of intensification of aorta contractions combined with an increase of the anterior midgut peristaltic waves. It has been previously described that haemolymph circulation during post-prandial diuresis is stimulated by the synergistic activity of allatotropin (AT) and serotonin in the kissing bug Triatoma infestans; resulting in an increase in aorta contractions. In the same species, AT stimulates anterior midgut and rectum muscle contractions to mix urine and feces and facilitate the voiding of the rectum. Furthermore, levels of AT in midgut and Malpighian tubules increased in the afternoon when insects are getting ready for nocturnal feeding. In the present study we describe the synergistic effect of AT and serotonin increasing the frequency of contractions of the aorta in Rhodnius prolixus. The basal frequency of contractions of the aorta in the afternoon is higher that the observed during the morning, suggesting the existence of a daily rhythmic activity. The AT receptor is expressed in the rectum, midgut and dorsal vessel, three critical organs involved in post-prandial diuresis. All together these findings provide evidence that AT plays a role as a myoregulatory and cardioacceleratory peptide in R. prolixus.


Subject(s)
Insect Hormones/physiology , Neuropeptides/physiology , Rhodnius/physiology , Animals , Aorta/physiology , Circadian Rhythm , Insect Proteins/metabolism , Male , Muscle Contraction , Muscle, Smooth/physiology , Organ Specificity , Receptors, Peptide/metabolism , Serotonin/physiology , Vasoconstriction
8.
PLoS One ; 8(10): e77520, 2013.
Article in English | MEDLINE | ID: mdl-24143240

ABSTRACT

BACKGROUND: Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. METHODS: A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. CONCLUSIONS: AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. SIGNIFICANCE: Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.


Subject(s)
Feeding Behavior , Insect Hormones/metabolism , Neuropeptides/metabolism , Animals , Computational Biology , Gene Expression Regulation , Hydra/metabolism , Insect Hormones/chemistry , Neuropeptides/chemistry , Quantum Dots , Receptors, Neuropeptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...