Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138815

ABSTRACT

Graphene growth by thermal decomposition of silicon carbide (SiC) is a technique that produces wafer-scale, single-orientation graphene on an insulating substrate. It is often referred to as epigraphene, and has been thought to be suitable for electronics applications. In particular, high-frequency devices for communication technology or large quantum Hall plateau for metrology applications using epigraphene are expected, which require high carrier mobility. However, the carrier mobility of as-grown epigraphene exhibit the relatively low values of about 1000 cm2/Vs. Fortunately, we can hope to improve this situation by controlling the electronic state of epigraphene by modifying the surface and interface structures. In this paper, the mobility of epigraphene and the factors that govern it will be described, followed by a discussion of attempts that have been made to improve mobility in this field. These understandings are of great importance for next-generation high-speed electronics using graphene.

2.
ACS Nano ; 17(17): 16448-16460, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37603298

ABSTRACT

Redox reactions of the Li+ insertion/extraction from one to two interlayers of graphene (Gr) on area-defined single-crystalline SiC substrates are investigated using lithium phosphorus oxynitride glass (LiPON) as the solid-state electrolyte. Unlike an organic liquid electrolyte, this glassy electrolyte does not induce a reduction current and excludes the desolvation reaction of Li+. Gr electrodes with less than two Gr layers show a single reduction peak and one or two oxidation peaks below +0.21 V (vs Li+/Li), differing distinctly from those of graphite and multilayer Gr, which display multiple peaks (multiple stage transitions). However, this finding aligns with the conventional understanding that graphite stage structure transitions proceed with stepwise increases or decreases in the number of Gr layers between adjacent Li-inserted interlayers. Cyclic voltammetry measurements indicate the presence of surface capacity due to Li+ adsorption/desorption at the LiPON/Gr interface. Moreover, Li+ insertion and extraction induce different charge transfer resistances at the level of a single interlayer. These sensitive measurements are achieved using high-quality epitaxial Gr and LiPON electrolyte, which prevent the formation of a solid electrolyte interphase and the desolvation reaction of Li+. Similar measurements using bilayer Gr produced by chemical vapor deposition coupled with a Gr transfer method and an ethylene carbonate/dimethyl carbonate liquid electrolyte are not reliable. Thus, the proposed method is effective for electrochemical measurement of Gr electrodes with a controlled number of layers.

3.
J Phys Condens Matter ; 35(38)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37321249

ABSTRACT

Graphene on SiC (0001‾) tends to grow in multiple layers and does not have a single orientation relation with the SiC substrate. It has been considered impossible to control the rotation angle of multilayer graphene on SiC (0001‾). In this study, we grew graphene on off-axis SiC substrates with various off angles from 0° to 8° and investigated their in-plane rotation and electronic structures systematically. As the off angle toward the [112‾0]SiCdirection increased, graphene rotated by 30° with respect to SiC became less dominant and instead, graphene rotated by 30 ± 2.5° appeared. We also found that the uniformity of the graphene rotation angle was relatively high on SiC substrates with a small off angle toward the [11‾00]SiCdirection. Our results suggest that the step-terrace structure defined by the substrate off-direction and angle plays an important role in the controllability of the rotation angle of graphene.

4.
Nanotechnology ; 31(14): 145711, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-31846947

ABSTRACT

We show that boron-doped epitaxial graphene can be successfully grown by thermal decomposition of a boron carbide thin film, which can also be epitaxially grown on a silicon carbide substrate. The interfaces of B4C on SiC and graphene on B4C had a fixed orientation relation, having a local stable structure with no dangling bonds. The first carbon layer on B4C acts as a buffer layer, and the overlaying carbon layers are graphene. Graphene on B4C was highly boron doped, and the hole concentration could be controlled over a wide range of 2 × 1013 to 2 × 1015 cm-2. Highly boron-doped graphene exhibited a spin-glass behavior, which suggests the presence of local antiferromagnetic ordering in the spin-frustration system. Thermal decomposition of carbides holds the promise of being a technique to obtain a new class of wafer-scale functional epitaxial graphene for various applications.

5.
Glob Chall ; 2(3): 1700105, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-31565325

ABSTRACT

The synthesis of silver nanoparticles (AgNPs) within the interlayer space of transparent layered titania nanosheet (TNS) films is investigated. A considerable number of silver ions (≈70% against the cation exchange capacity of the TNS) are intercalated in the TNS films using methyl-viologen-containing TNSs as a precursor. The silver ion (Ag+)-containing TNS films are treated with aqueous sodium tetrahydroborate (NaBH4), resulting in a gradual color change to bright blue. Various structural analyses clearly show that crystalline AgNPs are generated within the interlayer space of the TNSs. The NaBH4-treated films show intense and characteristic near-infrared (NIR) extinction spectra up to 1800 nm. The stability of the AgNPs within the TNS against oxygen and moisture is also investigated, and 96% and 82% of the AgNPs remain after standing in air for 1 month and 1 year, respectively. The NIR extinctions of the AgNP-containing TNS films are further extended by employing different preparation procedures, for example, using sintered TNS films as starting materials and irradiating the Ag+-containing TNSs with ultraviolet (UV) light. The obtained AgNP-containing TNS films exhibit photochemical activities in the production of hydrogen from ammonia borane under visible-light irradiation and the decomposition of nitrogen monoxide under UV-light irradiation.

6.
Phys Rev Lett ; 117(20): 205501, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27886482

ABSTRACT

Graphene has a negative thermal expansion coefficient; that is, when heated, the graphene lattice shrinks. On the other hand, the substrates typically used for graphene growth, such as silicon carbide, have a positive thermal expansion coefficient. Hence, on cooling graphene on SiC, graphene expands but SiC shrinks. This mismatch will physically break the atomic bonds between graphene and SiC. We have demonstrated that a graphenelike buffer layer on SiC can be converted to a quasifreestanding monolayer graphene by a rapid-cooling treatment. The decoupling of graphene from the SiC substrate was actually effective for reducing the electric carrier scattering due to interfacial phonons. In addition, the rapidly cooled graphene obtained in this way was of high-quality, strain-free, thermally stable, and strongly hole doped. This simple, classical, but quite novel technique for obtaining quasifreestanding graphene could open a new path towards a viable graphene-based semiconductor industry.

7.
Phys Chem Chem Phys ; 16(8): 3501-11, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24434866

ABSTRACT

We review here recent progress on epitaxial graphene grown on a SiC substrate. Epitaxial graphene can be easily grown by heating the SiC single crystal in a high vacuum or in an inert gas atmosphere. The SiC surfaces used for graphene growth contain Si- and C-terminated faces. On the Si-face, homogeneous and clean graphene can be grown with a controlled number of layers, and the carrier mobility reaches as high as several m(2) V s(-1), although this is reduced by the presence of the substrate steps. On the C-face, although the number of layers is not homogeneous, twisted bilayer graphene can be grown, which is expected to be the technique of choice to modify the electronic structure of graphene. From the application point of view, graphene on SiC will be the platform used to fabricate high-speed electronic devices and dense graphene nanoribbon arrays, which will be used to introduce a bandgap.

8.
Sci Rep ; 3: 3449, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24316665

ABSTRACT

Authors reported an effective path to increase the electrical conductivity while to decrease the thermal conductivity, and thus to enhance the ZT value by nano-inclusions. By this method, the ZT value of Nb-doped SrTiO3 was enhanced 9-fold by yttria stabilized zirconia (YSZ) nano-inclusions. YSZ inclusions, located inside grain and in triple junction, can reduce the thermal conductivity by effective interface phonon scattering, enhance the electrical conductivity by promoting the abnormal grain growth, and thus lead to the obvious enhancement of ZT value, which strongly suggests that, it is possible to not only reduce the thermal conductivity, but also increase the electrical conductivity by nano-inclusions with low thermal conductivity. This study will give some useful enlightenment to the preparation of high-performance oxide thermoelectric materials.

9.
J Phys Condens Matter ; 24(31): 314207, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22820622

ABSTRACT

We grew graphene by thermal decomposition of B(4)C and investigated its features by high-resolution transmission electron microscope observations. At temperatures higher than 1600 °C in a vacuum, B(4)C decomposes and graphene forms epitaxially on its surface. The number and the morphology of the graphene layers depend on the surface orientation. An electron diffraction technique revealed the presence of a superstructure with a two-times larger unit cell, which is consistent with the structure of BC(3). We have directly confirmed boron in the graphene layers by electron energy loss spectroscopy measurements and boron-mapping experiments.

10.
J Hazard Mater ; 215-216: 311-4, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22436339

ABSTRACT

In this study, layered double hydroxide (LDH) consisting of Mg(II) and Fe(III) (Mg/Fe-LDH) was synthesized by using a combination of coprecipitation with hydrothermal aging, and its anion-exchange properties were investigated. Through various analyses, the chemical formula of the proposed Mg/Fe-LDH was determined to be [Mg(0.76)Fe(0.24)(OH)(2)](Cl(-))(0.21)(CO(3)(2-))(0.02)·0.76H(2)O. Furthermore, amorphous Fe(III) impurities were contained in the present Mg/Fe-LDH. The proposed Mg/Fe-LDH exhibited clear selectivity for nitrate ions dissolved in water. This selectivity for nitrate ions can be explained by an anion-sieve effect by the existence of amorphous Fe(III) impurities. Our findings suggest that it is possible to synthesize LDHs with high selectivity for various anions by effective hybridizing Fe(III) impurities.


Subject(s)
Ferric Compounds/chemistry , Magnesium Hydroxide/chemistry , Nitrates/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Ion Exchange , Powder Diffraction , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
J Nanosci Nanotechnol ; 10(6): 3884-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20355384

ABSTRACT

High-resolution transmission electron microscopic cross-sectional observations of graphene-on-SiC(0001) were carried out to directly observe the interface structure. A first principles calculation allowed us to understand the interface structures and their electronic states. Our observations revealed a metastable transitional interface structure formed by decomposition of a single SiC bilayer as well as complete honeycomb graphene formed by the decomposition of three SiC bilayers. The calculations further showed that the differences in the interface structures should strongly influence the electronic states, producing either metallic or semiconducting behavior. These results may help to resolve the controversy over the electronic states of graphene-on-SiC, and promote more accurate band-gap engineering via surface decomposition.

12.
Sci Technol Adv Mater ; 11(4): 044306, 2010 Aug.
Article in English | MEDLINE | ID: mdl-27877347

ABSTRACT

Thermal conductivity is one of the key parameters in the figure of merit of thermoelectric materials. Over the past decade, most progress in thermoelectric materials has been made by reducing their thermal conductivity while preserving their electrical properties. The phonon scattering mechanisms involved in these strategies are reviewed here and divided into three groups, including (i) disorder or distortion of unit cells, (ii) resonant scattering by localized rattling atoms and (iii) interface scattering. In addition, we propose construction of a 'natural superlattice' in thermoelectric materials by intercalating an MX layer into the van der Waals gap of a layered TX2 structure which has a general formula of (MX)1+x (TX2) n (M=Pb, Bi, Sn, Sb or a rare earth element; T=Ti, V, Cr, Nb or Ta; X=S or Se and n=1, 2, 3). We demonstrate that one of the intercalation compounds (SnS)1.2(TiS2)2 has better thermoelectric properties compared with pure TiS2 in the direction parallel to the layers, as the electron mobility is maintained while the phonon transport is significantly suppressed owing to the reduction in the transverse phonon velocities.

SELECTION OF CITATIONS
SEARCH DETAIL
...