Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(8): 1653-1663, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36756772

ABSTRACT

Polymer crystallization drastically changes the physical properties of polymeric materials. However, the crystallization in polymer networks has been little explored. This study investigated the crystallization behavior of a series of poly(ethylene glycol) (PEG) networks consisting of well-defined branched precursors. The PEG networks were prepared by drying gels synthesized at various conditions. The PEG networks showed slower crystallization with lower final crystallinity than uncrosslinked PEGs with amine end groups. Surprisingly, the effect of network formation was not as significant as that of the relatively bulky end-groups introduced in the uncrosslinked polymer. The molecular weight of the precursor PEG, or equivalently the chain length between neighboring junctions, was the primary parameter that affected the crystallization of the PEG networks. Shorter network chains led to lower crystallization rates and final crystallinity. This effect became less significant as the network chain length increased. On the other hand, the spatial and topological defects formed in the gel synthesis process did not affect the crystallization in the polymer networks at all. The crystallization in the polymer networks seems insensitive to these mesoscopic defects and can be solely controlled by the chain length between junctions.

2.
RSC Adv ; 12(7): 3796-3800, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35425463

ABSTRACT

In this work, we report a high-yield one-pot synthesis of polyrotaxane (PR), composed of (2-hydroxypropyl)-α-cyclodextrin (hpCD) and polyethylene glycol (PEG), with well-defined hpCD threading ratios controllable across a wide range from 0.64% to 10%. In hpCD/PEG aqueous solutions, hpCDs are well dispersed and threaded spontaneously into hpCDs to form a pseudo-PR (pPR) structure. The homogeneous dispersion of hpCDs results in a well-defined threading ratio of hpCDs on PEG, which is suggested by the fact that the dispersity of the molecular weight distribution of PR is almost the same as that of pure PEG. The well-defined hpCD threading ratio of the PRs can be controlled over a wide range by tuning the hpCD concentration in the pPR solutions.

3.
Science ; 372(6546): 1078-1081, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34083486

ABSTRACT

Most tough hydrogels are reinforced by introducing sacrificial structures that can dissipate input energy. However, because the sacrificial damage cannot rapidly recover, the toughness of these gels drops substantially during consecutive cyclic loadings. We propose a damageless reinforcement strategy for hydrogels using strain-induced crystallization. For slide-ring gels in which polyethylene glycol chains are highly oriented and mutually exposed under large deformation, crystallinity forms and melts with elongation and retraction, resulting both in almost 100% rapid recovery of extension energy and excellent toughness of 6.6 to 22 megajoules per cubic meter, which is one order of magnitude larger than the toughness of covalently cross-linked homogeneous gels of polyethylene glycol.

SELECTION OF CITATIONS
SEARCH DETAIL
...