Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 169: 105402, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34246890

ABSTRACT

Coastal vegetated habitats maintain highly diverse communities, where the contribution of macrophyte production is significant for macroinvertebrate primary consumers. In the brackish-waters of the Baltic Sea, the taxonomical diversity of different macrophytes includes both marine and limnic species. To study the basal food-web differences of two key vegetated habitat types, either dominated by a perennial brown macroalgae (Fucus vesiculosus) or by angiosperm plants, 13C and 15N compositions of different primary producers and macroinvertebrate consumers were examined, and their diets were estimated by Bayesian mixing models. Carbon isotope diversity of primary producers was high especially in the hard-bottom Fucus-dominated habitats, which was also reflected in a larger consumer isotope niche. However, consumer isotope niche among sites was similar within the same habitat type. Our models indicated that the perennial macrophyte dietary median contribution was about 25% for deposit feeders and omnivores in both habitat types, while epigrazers preferred filamentous algae (30-60%). The niche positions of the abundant clams L. balthica, M. arenaria and C. glaucum differed between the two habitats, but they showed only small (<10% units) differences in their macrophyte dietary contributions. The isotopic compositions of the dominating primary producer assemblage reflected significantly in the isotope niche structure of the associated primary consumers.


Subject(s)
Ecosystem , Food Chain , Baltic States , Bayes Theorem , Carbon Isotopes
2.
Mar Environ Res ; 162: 105163, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33137597

ABSTRACT

Shallow coastal zones may provide cross-habitat nutrient subsidies for benthic communities offshore, as macrophyte matter can drift to deeper sediments. To study the relative importance of carbon and nutrient flows derived from different primary food sources in a coastal ecosystem, the diets of clam Macoma balthica, polychaete Marenzelleria spp. and mussel Mytilus trossulus were examined across environmental gradients in the northern Baltic Sea using a triple-isotope approach (i.e. 13C, 15N and 34S) and Bayesian mixing models (MixSIAR). Our results suggest that in shallow habitats, production from Fucus vesiculosus is the primary energy source for M. balthica. The proportion of macroalgae-derived matter in the diet of M. balthica and Marenzelleria spp. decreased following a depth gradient. Our models for M. trossulus indicate that the pelagic POM dominates its diet. Our results indicate a trophic connectivity between shallow macrophyte-dominated and deeper habitats, which receive significant amounts of nutrient subsidies from shallower areas.


Subject(s)
Seaweed , Animals , Baltic States , Bayes Theorem , Ecosystem , Food Chain , Nitrogen Isotopes/analysis
3.
Sci Rep ; 8(1): 7619, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769583

ABSTRACT

Bioturbation is a key process affecting nutrient cycling in soft sediments. The invasive polychaete genus Marenzelleria spp. has established successfully throughout the Baltic Sea increasing species and functional diversity with possible density-dependent effects on bioturbation and associated solute fluxes. We tested the effects of increasing density of M. arctia, M. viridis and M. neglecta on bioturbation and solute fluxes in a laboratory experiment. Benthic communities in intact sediment cores were manipulated by adding increasing numbers of Marenzelleria spp. The results showed that Marenzelleria spp. in general enhanced all bioturbation metrics, but the effects on solute fluxes varied depending on the solute, on the density and species identity of Marenzelleria, and on the species and functional composition of the surrounding community. M. viridis and M. neglecta were more important in predicting variation in phosphate and silicate fluxes, whereas M. arctia had a larger effect on nitrogen cycling. The complex direct and indirect pathways indicate the importance of considering the whole community and not just species in isolation in the experimental studies. Including these interactions provides a way forward regarding our understanding of the complex ecosystem effects of invasive species.


Subject(s)
Ecosystem , Geologic Sediments/analysis , Geologic Sediments/chemistry , Introduced Species , Polychaeta/metabolism , Water Pollutants, Chemical/analysis , Ammonium Compounds/metabolism , Animals , Nitrates/metabolism , Nitrites/metabolism , Phosphates/metabolism , Polychaeta/classification , Silicates/metabolism , Water Pollutants, Chemical/metabolism
4.
Ecol Appl ; 21(6): 2172-86, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939052

ABSTRACT

The increasing pressure on marine biodiversity emphasizes the importance of finding benchmarks against which to assess change. This is, however, a notoriously difficult task in estuarine ecosystems, where environmental gradients are steep, and where benthic biodiversity is highly variable in space and time. Although recent emphasis on diverse, healthy benthic communities in legislative frameworks has increased the number of indices developed for assessing benthic status, there is a lack of quantitative baselines in benthic diversity that would enable comparisons across broad spatial scales, encompassing different environmental settings and bioregions. By taking advantage of long-term monitoring data, spanning hundreds of stations over the past 40 years, we provide a comprehensive analysis of benthic a, beta, and gamma diversity, encompassing the entire' salinity gradient of the open sea areas of the large, brackish-water Baltic Sea. Using a relatively simple measure, average regional diversity, we define area-specific reference conditions and acceptable deviation against which to gauge current conditions in benthic macrofaunal diversity. Results show a severely impaired condition throughout large areas of the Baltic for the assessment period 2001-2006. All ecosystems are plagued by baselines that shift in time and space, and their definition is not trivial, but average regional diversity may offer a transparent way to deal with such changes in low-diversity systems. Identifying baselines will be of increasing importance given the potential of climatic drivers to interact with local anthropogenic stressors to affect patterns of biodiversity. Our analysis provides an evaluation of the current condition in a system that has been heavily influenced by anthropogenic impact and changing oceanographic conditions, and it provides a basis for future impact assessment and ecosystem-based management.


Subject(s)
Biodiversity , Environmental Monitoring , Invertebrates/classification , Invertebrates/physiology , Animals , Demography , Oceans and Seas , Time Factors
5.
Ecology ; 88(11): 2810-20, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18051650

ABSTRACT

Predicting the dynamics of ecosystems requires an understanding of how trophic interactions respond to environmental change. In Antarctic marine ecosystems, food web dynamics are inextricably linked to sea ice conditions that affect the nature and magnitude of primary food sources available to higher trophic levels. Recent attention on the changing sea ice conditions in polar seas highlights the need to better understand how marine food webs respond to changes in such broad-scale environmental drivers. This study investigated the importance of sea ice and advected primary food sources to the structure of benthic food webs in coastal Antarctica. We compared the isotopic composition of several seafloor taxa (including primary producers and invertebrates with a variety of feeding modes) that are widely distributed in the Antarctic. We assessed shifts in the trophic role of numerically dominant benthic omnivores at five coastal Ross Sea locations. These locations vary in primary productivity and food availability, due to their different levels of sea ice cover, and proximity to polynyas and advected primary production. The delta15N signatures and isotope mixing model results for the bivalves Laternula elliptica and Adamussium colbecki and the urchin Sterechinus neumeyeri indicate a shift from consumption of a higher proportion of detritus at locations with more permanent sea ice in the south to more freshly produced algal material associated with proximity to ice-free water in the north and east. The detrital pathways utilized by many benthic species may act to dampen the impacts of large seasonal fluctuations in the availability of primary production. The limiting relationship between sea ice distribution and in situ primary productivity emphasizes the role of connectivity and spatial subsidies of organic matter in fueling the food web. Our results begin to provide a basis for predicting how benthic ecosystems will respond to changes in sea ice persistence and extent along environmental gradients in the high Antarctic.


Subject(s)
Ecosystem , Food Chain , Food Supply , Ice Cover , Marine Biology , Animals , Antarctic Regions , Bivalvia/growth & development , Crustacea/growth & development , Demography , Eukaryota/growth & development , Greenhouse Effect , Oceans and Seas , Population Dynamics , Seasons
6.
J Exp Mar Biol Ecol ; 248(1): 79-104, 2000 May 18.
Article in English | MEDLINE | ID: mdl-10764885

ABSTRACT

Patchy occurrences of benthic drift algae (i.e. loose lying macroalgal mats) may increase habitat complexity on normally bare soft bottoms, but at the same time, extensive amounts of drifting algal mats are known to stress the benthic fauna. This paper presents results of the first detailed study of the fauna associated with drift algal mats in the northern Baltic Sea. In order to assess the importance of drifting algae as an alternative habitat for benthic fauna, benthic drift algal mats were sampled on shallow (2-9 m) sandy soft bottoms in the outer archipelago of the Åland Islands (Finland). Species composition, abundance and biomass of the macrofauna associated with algal mats were recorded. The results show that drifting algae at times can harbour very high abundances of invertebrates (up to 1116 individuals/g algal dryweight), surpassing invertebrate densities recorded in seagrass communities. The algal fauna varied between sites and over time, and factors such as ambient benthic fauna, exposure to wind-wave disturbance, depth, and algal coverage and condition influenced the invertebrate community composition of the algal mats. Abundance increased while individual biomass of the animals decreased over time (summer season; July-October). A series of laboratory experiments were conducted in order to test the ability of a few important benthic species to move up into, and survive in a drifting algal mat. Macoma balthica, Hydrobia spp., Nereis diversicolor and Bathyporeia pilosa were used in the experiments, and significant differences in their survival and mobility within drifting algae were recorded. This study shows that benthic species differ significantly in their ability to utilise the algal mats, with mainly opportunistic and mobile taxa such as Hydrobia spp., Chironomidae and Ostracoda benefiting from the algae, whereas infaunal species such as M. balthica and B. pilosa are negatively affected. The occurrence of eutrophication induced drifting macroalgal mats has increased significantly during the last decade in the northern Baltic Sea. Hence, the importance of drifting algae as a stress factor and as an alternative habitat for benthic fauna increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...