Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049153

ABSTRACT

Surfaces of semiconducting materials excited by femtosecond laser pulses emit electromagnetic waves in the terahertz (THz) frequency range, which by definition is the 0.1-10 THz region. The nature of terahertz radiation pulses is, in the majority of cases, explained by the appearance of ultrafast photocurrents. THz pulse duration is comparable with the photocarrier momentum relaxation time, thus such hot-carrier effects as the velocity overshoot, ballistic carrier motion, and optical carrier alignment must be taken into consideration when explaining experimental observations of terahertz emission. Novel commercially available tools such as optical parametric amplifiers that are capable of generating femtosecond optical pulses within a wide spectral range allow performing new unique experiments. By exciting semiconductor surfaces with various photon energies, it is possible to look into the ultrafast processes taking place at different electron energy levels of the investigated materials. The experimental technique known as the THz excitation spectroscopy (TES) can be used as a contactless method to study the band structure and investigate the ultrafast processes of various technologically important materials. A recent decade of investigations with the THz excitation spectroscopy method is reviewed in this article. TES experiments performed on the common bulk A3B5 compounds such as the wide-gap GaAs, and narrow-gap InAs and InSb, as well as Ge, Te, GaSe and other bulk semiconductors are reviewed. Finally, the results obtained by this non-contact technique on low-dimensional materials such as ultrathin mono-elemental Bi films, InAs, InGaAs, and GaAs nanowires are also presented.

2.
Opt Lett ; 46(15): 3681-3684, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329255

ABSTRACT

Thinner than 10 nm layers of bismuth (Bi) were grown on (111) Si substrates by molecular beam epitaxy. Terahertz (THz) radiation pulses from these layers excited by tunable wavelength femtosecond optical pulses were measured. THz emission sets on when the photon energy exceeds 0.45 eV, which was explained by the semimetal-to-semiconductor transition at this Bi layer thickness. A THz signal has both isotropic and anisotropic components that could be caused by the lack of balance of lateral photocurrent components and the shift currents, respectively.

3.
Sensors (Basel) ; 21(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204838

ABSTRACT

Terahertz radiation pulses emitted after exciting semiconductor heterostructures by femtosecond optical pulses were used to determine the electron energy band offsets between different constituent materials. It has been shown that when the photon energy is sufficient enough to excite electrons in the narrower bandgap layer with an energy greater than the conduction band offset, the terahertz pulse changes its polarity. Theoretical analysis performed both analytically and by numerical Monte Carlo simulation has shown that the polarity inversion is caused by the electrons that are excited in the narrow bandgap layer with energies sufficient to surmount the band offset with the wide bandgap substrate. This effect is used to evaluate the energy band offsets in GaInAs/InP and GaInAsBi/InP heterostructures.

4.
Materials (Basel) ; 14(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201229

ABSTRACT

Electron dynamics in the polycrystalline bismuth films were investigated by measuring emitted terahertz (THz) radiation pulses after their photoexcitation by tunable wavelength femtosecond duration optical pulses. Bi films were grown on metallic Au, Pt, and Ag substrates by the electrodeposition method with the Triton X-100 electrolyte additive, which allowed us to obtain more uniform films with consistent grain sizes on any substrate. It was shown that THz pulses are generated due to the spatial separation of photoexcited electrons and holes diffusing from the illuminated surface at different rates. The THz photoconductivity spectra analysis has led to a conclusion that the thermalization of more mobile carriers (electrons) is dominated by the carrier-carrier scattering rather than by their interaction with the lattice.

5.
Sci Rep ; 9(1): 7077, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068629

ABSTRACT

Spectral dependence of terahertz emission is a sensitive tool to analyze the structure of conduction band of semiconductors. In this work, we investigate the excitation spectra of THz pulses emitted from MOCVD-grown InN and InGaN epitaxial layers with indium content of 16%, 68%, and 80%. In InN and indium-rich InGaN layers we observe a gradual saturation of THz emission efficiency with increasing photon energy. This is in stark contrast to other III-V semiconductors where an abrupt drop of THz efficiency occurs at certain photon energy due to inter-valley electron scattering. From these results, we set a lower limit of the intervalley energy separation in the conduction band of InN as 2.4 eV. In terms of THz emission efficiency, the largest optical-to-THz energy conversion rate was obtained in 75 nm thick In0.16Ga0.84N layer, while lower THz emission efficiency was observed from InN and indium-rich InGaN layers due to the screening of built-in field by a high-density electron gas in these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...