Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 46(7): 597-609, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32588285

ABSTRACT

In a field-trapping experiment with plant volatiles, we observed notably high attraction of green lacewing (Chrysotropia ciliata) males to the compound p-anisaldehyde. Based on this finding, we initiated the present study to elucidate this phenomenon and to investigate the chemical ecology of C. ciliata. Scanning electron microscopy revealed elliptical glands abundantly distributed on the 2nd to 6th abdominal sternites of C. ciliata males, whereas females of the species completely lacked such glands. No p-anisaldehyde was found in extractions of body parts of C. ciliata. Methyl p-anisate and p-methoxybenzoic acid were identified exclusively in the extract from abdominal segments 2-8 of males. Field-trapping experiments revealed no attraction of C. ciliata to either methyl p-anisate or p-methoxybenzoic acid. In contrast, males showed marked attraction to p-anisaldehyde in the field and antennae showed strong responses to this compound. Headspace collections in the field from living insects in their natural environment and during their main daily activity period indicated that p-anisaldehyde was emitted exclusively by C. ciliata males. Our overall results suggest that p-anisaldehyde might serve as a male-produced pheromone that attracts conspecific C. ciliata males. Here, we discuss hypotheses regarding possible mechanisms involved in regulation of p-anisaldehyde production, including involvement of the compounds methyl p-anisate and p-methoxybenzoic acid, and the potential ecological function of p-anisaldehyde in C. ciliata.


Subject(s)
Benzaldehydes/metabolism , Chemotaxis , Insecta/physiology , Pheromones/physiology , Animals , Male
2.
Pest Manag Sci ; 76(9): 3253-3263, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32356384

ABSTRACT

BACKGROUND: Pollen beetles are key pests in oilseed rape (OSR) production. These beetles use visual and olfactory cues to locate their host plants at specific phenological stages, hence trap cropping may represent an alternative pest control strategy. In this study, a trap crop strategy for spring OSR was developed. To elaborate such a trap cropping system, a pest control measure that eradicates the attracted beetles in the trap crop before they migrate further into the main crop was included in the final trap cropping strategy. RESULTS: Testing yellow-flowering turnip rape and one yellow- and two cream-coloured flowering OSR cultivars as potential crops in different trap cropping strategies, we found that pollen beetles clearly preferred turnip rape over the cream-coloured and yellow OSR cultivars, and preferred the yellow OSR cultivar over the two cream-coloured cultivars. This behaviour was related to the plant growth stage and associated volatile and colour signals of the tested cultivars. Using turnip rape as a trap crop and testing kairomone- or insecticide-assisted trap cropping as the pest control strategy was as effective as compared with whole fields treated with a standard pesticide. CONCLUSION: Combining a turnip rape cultivar as trap crop with kairomone traps placed in the trap crop as a killing agent may enable renunciation of pesticides in spring OSR production. © 2020 Society of Chemical Industry.


Subject(s)
Brassica napus , Brassica rapa , Coleoptera , Animals , Pheromones/pharmacology , Pollen
3.
Front Plant Sci ; 8: 2206, 2017.
Article in English | MEDLINE | ID: mdl-29312430

ABSTRACT

Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.

SELECTION OF CITATIONS
SEARCH DETAIL
...