Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer J ; 14(1): 75, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697976

ABSTRACT

Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma, constitutes a paradigm of immune tumor microenvironment (TME) contribution to disease onset, progression, and heterogenous clinical outcome. Here we present the first FL-Patient Derived Lymphoma Spheroid (FL-PDLS), including fundamental immune actors and features of TME in FL lymph nodes (LNs). FL-PDLS is organized in disc-shaped 3D structures composed of proliferating B and T cells, together with macrophages with an intermediate M1/M2 phenotype. FL-PDLS recapitulates the most relevant B-cell transcriptional pathways present in FL-LN (proliferation, epigenetic regulation, mTOR, adaptive immune system, among others). The T cell compartment in the FL-PDLS preserves CD4 subsets (follicular helper, regulatory, and follicular regulatory), also encompassing the spectrum of activation/exhaustion phenotypes in CD4 and CD8 populations. Moreover, this system is suitable for chemo and immunotherapy testing, recapitulating results obtained in the clinic. FL-PDLS allowed uncovering that soluble galectin-9 limits rituximab, rituximab, plus nivolumab/TIM-3 antitumoral activities. Blocking galectin-9 improves rituximab efficacy, highlighting galectin-9 as a novel immunotherapeutic target in FL. In conclusion, FL-PDLS maintains the crosstalk between malignant B cells and the immune LN-TME and constitutes a robust and multiplexed pre-clinical tool to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.


Subject(s)
Galectins , Lymph Nodes , Lymphoma, Follicular , Tumor Microenvironment , Humans , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Lymphoma, Follicular/therapy , Lymph Nodes/pathology , Lymph Nodes/immunology , Tumor Microenvironment/immunology , Spheroids, Cellular , Immunotherapy/methods , Signal Transduction , Tumor Cells, Cultured
2.
Leukemia ; 37(6): 1311-1323, 2023 06.
Article in English | MEDLINE | ID: mdl-37031299

ABSTRACT

Mantle cell lymphoma (MCL), a rare and aggressive B-cell non-Hodgkin lymphoma, mainly develops in the lymph node (LN) and creates a protective and immunosuppressive niche that facilitates tumor survival, proliferation and chemoresistance. To capture disease heterogeneity and tumor microenvironment (TME) cues, we have developed the first patient-derived MCL spheroids (MCL-PDLS) that recapitulate tumor oncogenic pathways and immune microenvironment in a multiplexed system that allows easy drug screening, including immunotherapies. MCL spheroids, integrated by tumor B cells, monocytes and autologous T-cells self-organize in disc-shaped structures, where B and T-cells maintain viability and proliferate, and monocytes differentiate into M2-like macrophages. RNA-seq analysis demonstrated that tumor cells recapitulate hallmarks of MCL-LN (proliferation, NF-kB and BCR), with T cells exhibiting an exhaustion profile (PD1, TIM-3 and TIGIT). MCL-PDLS reproduces in vivo responses to ibrutinib and demonstrates that combination of ibrutinib with nivolumab (anti-PD1) may be effective in ibrutinib-resistant cases by engaging an immune response with increased interferon gamma and granzyme B release. In conclusion, MCL-PDLS recapitulates specific MCL-LN features and in vivo responses to ibrutinib, representing a robust tool to study MCL interaction with the immune TME and to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Cell Line, Tumor , Lymphoma, Mantle-Cell/pathology , Drug Resistance, Neoplasm , Adenine/therapeutic use , Tumor Microenvironment
3.
Toxicon ; 212: 34-41, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35413334

ABSTRACT

BACKGROUND: Botulinum neurotoxins (BoNTs) are used to treat spastic disorders. Depending on muscle size, one or multiple injections are recommended according to labels to target neuromuscular junctions (NMJ). However, information about NMJ distribution and number in muscles, as well as expression of receptors and molecular targets of toxins is scarce in human and animal models. METHODS: Seven muscles from adult rats were used to identify expression of BoNT receptors and SNAREs using immunohistochemistry (IHC), and fluorescent α-Bungarotoxin combined to light-sheet microscopy used to determine their distribution. RESULTS: The location, number, and density of NMJ were muscle specific and mostly dependent on the type of pennation (myofiber orientation). In the Flexor Digitorum Brevis (a very small muscle) NMJ were as numerous as in the Gastrocnemius lateralis. A strong expression of SV2C, Synaptotagmin 2, SNAP25 and VAMP1 were observed in all muscles, and SV2A, Synaptotagmin 1 and VAMP2 were never detected. CONCLUSION: This work highlights the specific distribution of NMJ in muscles which seems to depend on the type of pennation. Detailed observation of myofibers organization might help clinicians to better evaluate the location of NMJ in humans; the molecular phenotyping of NMJ will contribute to better integrate the rat model into research of BoNT therapeutics.


Subject(s)
Botulinum Toxins, Type A , Animals , Botulinum Toxins, Type A/metabolism , Muscle Spasticity , Muscle, Skeletal , Neuromuscular Junction , Rats
4.
Cancers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804934

ABSTRACT

Follicular lymphoma (FL) is an indolent B cell lymphoproliferative disorder of transformed follicular center B cells, which accounts for 20-30 percent of all non-Hodgkin lymphoma (NHL) cases. Great advances have been made to identify the most relevant targets for precision therapy. However, no relevant models for in vitro studies have been developed or characterized in depth. To this purpose, we generated a 3D cell model from t(14;18)-positive B-NHL cell lines cultured in ultra-low attachment 96-well plates. Morphological features and cell growth behavior were evaluated by classical microscopy (2D imaging) and response to treatment with different drugs was evaluated by a high-content analysis system to determine the robustness of the model. We show that the ultra-low attachment (ULA) method allows the development of regular, spherical and viable ULA-multicellular aggregates of lymphoma cells (MALC). However, discrepancies in the results obtained after 2D imaging analyses on drug-treated ULA-MALC prompted us to develop 3D imaging and specific analyses. We show by using light sheet microscopy and specifically developed 3D imaging algorithms that 3D imaging and dedicated analyses are necessary to characterize morphological properties of 3D models and drug effects. This study proposes a new method, but also imaging tools and informatic solutions, developed for FL necessary for future preclinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...