Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(9): 11646-11655, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38387025

ABSTRACT

Yttrium-doped barium zirconate (BZY) has garnered attention as a protonic conductor in intermediate-temperature electrolysis and fuel cells due to its high bulk proton conductivity and excellent chemical stability. However, the performance of BZY can be further enhanced by reducing the concentration and resistance of grain boundaries. In this study, we investigate the impact of manganese (Mn) additives on the sinterability and proton conductivity of Y-doped BaZrO3 (BZY). By employing a combinatorial pulsed laser deposition (PLD) technique, we synthesized BZY thin films with varying Mn concentrations and sintering temperatures. Our results revealed a significant enhancement in sinterability as Mn concentrations increased, leading to larger grain sizes and lower grain boundary concentrations. These improvements can be attributed to the elevated grain boundary diffusion of zirconium (Zr) cations, which enhances material densification. We also observed a reduction in Goldschmidt's tolerance factor with increased Mn substitution, which can improve proton transport. The high proton conduction of BZY with Mn additives in low-temperature and wet hydrogen environments makes it a promising candidate for protonic ceramic electrolysis cells and fuel cells. Our findings not only advance the understanding of Mn additives in BZY materials but also demonstrate a high-throughput combinatorial thin film approach to select additives for other perovskite materials with importance in mass and charge transport applications.

2.
Nano Lett ; 21(21): 9131-9137, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34676756

ABSTRACT

Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.

3.
ACS Sustain Chem Eng ; 9(2): 623-628, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-38706722

ABSTRACT

The accumulation of plastic waste in the environment has prompted the development of new chemical recycling technologies. A recently reported approach employed homogeneous organometallic catalysts for tandem dehydrogenation and olefin cross metathesis to depolymerize polyethylene (PE) feedstocks to a mixture of alkane products. Here, we build on that prior work by developing a fully heterogeneous catalyst system using a physical mixture of SnPt/γ-Al2O3 and Re2O7/γ-Al2O3. This heterogeneous catalyst system produces a distribution of linear alkane products from a model, linear C20 alkane, n-eicosane, and from a linear PE substrate (which is representative of high-density polyethylene), both in an n-pentane solvent. For the PE substrate, a molecular weight decrease of 73% was observed at 200 °C in 15 h. This type of tandem chemistry is an example of an olefin-intermediate process, in which poorly reactive aliphatic substrates are first activated through dehydrogenation and then functionalized or cleaved by a highly-active olefin catalyst. Olefin-intermediate processes like that examined here offer both a selective and versatile means to depolymerize polyolefins at lower severity than traditional pyrolysis or cracking conditions.

4.
ACS Appl Mater Interfaces ; 11(50): 46993-47002, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31738043

ABSTRACT

Because of the complexity, high reactivity, and continuous evolution of the silicon-electrolyte interphase (SiEI), "individual" constituents of the SiEI were investigated to understand their physical, electrochemical, and mechanical properties. For the analysis of these intrinsic properties, known SiEI components (i.e., SiO2, Li2Si2O5, Li2SiO3, Li3SiOx, Li2O, and LiF) were selected and prepared as amorphous thin films. The chemical composition, purity, morphology, roughness, and thickness of prepared samples were characterized using a variety of analytical techniques. On the basis of subsequent analysis, LiF shows the lowest ionic conductivity and relatively weak, brittle mechanical properties, while lithium silicates demonstrate higher ionic conductivities and greater mechanical hardness. This research establishes a framework for identifying components critical for stabilization of the SiEI, thus enabling rational design of new electrolyte additives and functional binders for the development of next-generation advanced Li-ion batteries utilizing Si anodes.

5.
Nanotechnology ; 25(44): 445402, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25319397

ABSTRACT

We use thin tensile-strained AlAs layers to manage compressive strain in stacked layers of InAs/AlAsSb quantum dots (QDs). The AlAs layers allow us to reduce residual strain in the QD stacks, suppressing strain-related defects. AlAs layers 2.4 monolayers thick are sufficient to balance the strain in the structures studied, in agreement with theory. Strain balancing improves material quality and helps increase QD uniformity by preventing strain accumulation and ensuring that each layer of InAs experiences the same strain. Stacks of 30 layers of strain-balanced QDs exhibit carrier lifetimes as long as 9.7 ns. QD uniformity is further enhanced by vertical ABAB… ordering of the dots in successive layers. Strain compensated InAs/AlAsSb QD stacks show great promise for intermediate band solar cell applications.

6.
Microsc Microanal ; 13(6): 493-502, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18001514

ABSTRACT

The applicability of atom probe to the characterization of photovoltaic devices is presented with special emphasis on high efficiency III-V and low cost ITO/a-Si:H heterojunction cells. Laser pulsed atom probe is shown to enable subnanometer chemical and structural depth profiling of interfaces in III-V heterojunction cells. Hydrogen, oxygen, and phosphorus chemical profiling in 5-nm-thick a-Si heterojunction cells is also illustrated, along with compositional analysis of the ITO/a-Si interface. Detection limits of atom probe tomography useful to semiconductor devices are also discussed. Gaining information about interfacial abruptness, roughness, and dopant profiles will allow for the determination of semiconductor conductivity, junction depletion widths, and ultimately photocurrent collection efficiencies and fill factors.

7.
J Phys Chem B ; 110(50): 25451-4, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17165992

ABSTRACT

We report nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. InAs quantum dots of different sizes were synthesized and incorporated in solar cell devices. Efficient charge transfer from InAs quantum dots to TiO2 particles was achieved without deliberate modification of the quantum dot capping layer. A power conversion efficiency of about 1.7% under 5 mW/cm2 was achieved; this is relatively high for a nanocrystalline metal oxide solar cell sensitized with presynthesized quantum dots, but this efficiency could only be achieved at low light intensity. At one sun, the efficiency decreased to 0.3%. The devices are stable for at least weeks under room light in air.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Nanostructures/chemistry , Quantum Dots , Titanium/chemistry , Arsenicals/chemical synthesis , Crystallization , Particle Size , Photochemistry , Semiconductors , Sensitivity and Specificity , Surface Properties
8.
J Am Chem Soc ; 128(10): 3241-7, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16522105

ABSTRACT

We report an alternative synthesis and the first optical characterization of colloidal PbTe nanocrystals (NCs). We have synthesized spherical PbTe NCs having a size distribution as low as 7%, ranging in diameter from 2.6 to 8.3 nm, with first exciton transitions tuned from 1009 to 2054 nm. The syntheses of colloidal cubic-like PbSe and PbTe NCs using a PbO "one-pot" approach are also reported. The photoluminescence quantum yield of PbTe spherical NCs was measured to be as high as 52 +/- 2%. We also report the first known observation of efficient multiple exciton generation (MEG) from single photons absorbed in PbTe NCs. Finally, we report calculated longitudinal and transverse Bohr radii for PbS, PbSe, and PbTe NCs to account for electronic band anisotropy. This is followed by a comparison of the differences in the electronic band structure and optical properties of these lead salts.

9.
Phys Rev Lett ; 90(2): 026102, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12570558

ABSTRACT

Quadruple-period ordering in GaAsSb alloys is studied both theoretically and experimentally. A growth model is proposed to account for the observed three-dimensional (3D) ordered structure. The model is qualitatively different from the widely accepted surface reconstruction and dimerization-induced ordering models that strictly speaking explain only the in-plane 2D patterns. Here, we show that the already ordered substrate will affect the reconstruction of the growth front with respect to the substrate to ensure a correct stacking of the individual 2D ordered layers into the observed 3D lattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...