Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 21(1): 552, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809560

ABSTRACT

BACKGROUND: Improvement of tuber yield and tolerance to viruses are priority objectives in white Guinea yam breeding programs. However, phenotypic selection for these traits is quite challenging due to phenotypic plasticity and cumbersome screening of phenotypic-induced variations. This study assessed quantitative trait nucleotides (QTNs) and the underlying candidate genes related to tuber yield per plant (TYP) and yam mosaic virus (YMV) tolerance in a panel of 406 white Guinea yam (Dioscorea rotundata) breeding lines using a genome-wide association study (GWAS). RESULTS: Population structure analysis using 5,581 SNPs differentiated the 406 genotypes into seven distinct sub-groups based delta K. Marker-trait association (MTA) analysis using the multi-locus linear model (mrMLM) identified seventeen QTN regions significant for TYP and five for YMV with various effects. The seveteen QTNs were detected on nine chromosomes, while the five QTNs were identified on five chromosomes. We identified variants responsible for predicting higher yield and low virus severity scores in the breeding panel through the marker-effect prediction. Gene annotation for the significant SNP loci identified several essential putative genes associated with the growth and development of tuber yield and those that code for tolerance to mosaic virus. CONCLUSION: Application of different multi-locus models of GWAS identified 22 QTNs. Our results provide valuable insight for marker validation and deployment for tuber yield and mosaic virus tolerance in white yam breeding. The information on SNP variants and genes from the present study would fast-track the application of genomics-informed selection decisions in breeding white Guinea yam for rapid introgression of the targeted traits through markers validation.


Subject(s)
Dioscorea/genetics , Dioscorea/virology , Disease Resistance/genetics , Mosaic Viruses/pathogenicity , Plant Breeding/methods , Plant Tubers/growth & development , Quantitative Trait Loci , Genes, Plant , Genetic Markers , Genetic Variation , Genome-Wide Association Study , Phenotype , Plant Tubers/genetics
2.
Plants (Basel) ; 9(4)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325826

ABSTRACT

White Guinea yam is mostly a dioecious outcrossing crop with male and female flowers produced on distinct plants. Fertile parents produce high fruit set in an open pollination polycross block, which is a cost-effective and convenient way of generating variability in yam breeding. However, the pollen parent of progeny from polycross mating is usually unknown. This study aimed to determine paternity in white Guinea yam half-sib progenies from polycross mating design. A total of 394 half-sib progenies from random open pollination involving nine female and three male parents was genotyped with 6602 SNP markers from DArTSeq platform to recover full pedigree. A higher proportion of expected heterozygosity, allelic richness, and evenness were observed in the half-sib progenies. A complete pedigree was established for all progenies from two families (TDr1685 and TDr1688) with 100% accuracy, while in the remaining families, paternity was assigned successfully only for 56 to 98% of the progenies. Our results indicated unequal paternal contribution under natural open pollination in yam, suggesting unequal pollen migrations or gene flow among the crossing parents. A total of 3.8% of progenies lacking paternal identity due to foreign pollen contamination outside the polycross block was observed. This study established the efficient determination of parental reconstruction and allelic contributions in the white Guinea yam half-sib progenies generated from open pollination polycross using SNP markers. Findings are useful for parental reconstruction, accurate dissection of the genetic effects, and selection in white Guinea yam breeding program utilizing polycross mating design.

3.
Physiol Mol Biol Plants ; 26(2): 317-330, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158137

ABSTRACT

Dearth of information on extent of genetic variability in cassava limits the genetic improvement of cassava genotypes in Sierra Leone. The aim of this study was to assess the genetic diversity and relationships within 102 cassava genotypes using agro-morphological and single nucleotide polymorphism markers. Morphological classification based on qualitative traits categorized the germplasm into five different groups, whereas the quantitative trait set had four groups. The SNP markers classified the germplasm into three main cluster groups. A total of seven principal components (PCs) in the qualitative and four PCs in the quantitative trait sets accounted for 79.03% and 72.30% of the total genetic variation, respectively. Significant and positive correlations were observed between average yield per plant and harvest index (r = 0.76***), number of storage roots per plant and harvest index (r = 0.33*), height at first branching and harvest index (0.26*), number of storage roots per plant and average yield per plant (r = 0.58*), height at first branching and average yield per plant (r = 0.24*), length of leaf lobe and petiole length (r = 0.38*), number of leaf lobe and petiole length (r = 0.31*), width of leaf lobe and length of leaf lobe (r = 0.36*), number of leaf lobe and length of leaf lobe (r = 0.43*), starch content and dry matter content (r = 0.99***), number of leaf lobe and root dry matter (r = 0.30*), number of leaf lobe and starch content (r = 0.28*), and height at first branching and plant height (r = 0.45**). Findings are useful for conservation, management, short term recommendation for release and genetic improvement of the crop.

SELECTION OF CITATIONS
SEARCH DETAIL
...