Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 3(9): e10199, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31667455

ABSTRACT

Aging is associated with significant bone loss and increased fracture risk, which has been attributed to a diminished response to anabolic mechanical loading. In adults, skeletal progenitors proliferate and differentiate into bone-forming osteoblasts in response to increasing mechanical stimuli, though the effects of aging on this response are not well-understood. Here we show that both adult and aged mice exhibit load-induced periosteal bone formation, though the response is significantly attenuated with age. We also show that the acute response of adult bone to loading involves expansion of Sca-1+Prrx1+ and Sca-1-Prrx1+ cells in the periosteum. On the endosteal surface, loading enhances proliferation of both these cell populations, though the response is delayed by 2 days relative to the periosteal surface. In contrast to the periosteum and endosteum, the marrow does not exhibit increased proliferation of Sca-1+Prrx1+ cells, but only of Sca-1-Prrx1+ cells, underscoring fundamental differences in how the stem cell niche in distinct bone envelopes respond to mechanical stimuli. Notably, the proliferative response to loading is absent in aged bone even though there are similar baseline numbers of Prrx1 + cells in the periosteum and endosteum, suggesting that the proliferative capacity of progenitors is attenuated with age, and proliferation of the Sca-1+Prrx1+ population is critical for load-induced periosteal bone formation. These findings provide a basis for the development of novel therapeutics targeting these cell populations to enhance osteogenesis for overcoming age-related bone loss. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

2.
J Biomech ; 48(1): 53-8, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25443882

ABSTRACT

Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges.


Subject(s)
Mathematics/methods , Osteogenesis/physiology , Stress, Mechanical , Ulna/physiology , Adaptation, Physiological/physiology , Animals , Calibration , Female , Mice , Mice, Inbred C57BL , Models, Animal , Periosteum/physiology , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...