Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1192800, 2023.
Article in English | MEDLINE | ID: mdl-37377641

ABSTRACT

Leishmaniasis is a neglected tropical parasitic disease with few approved medications. Cutaneous leishmaniasis (CL) is the most frequent form, responsible for 0.7 - 1.0 million new cases annually worldwide. Leukotrienes are lipid mediators of inflammation produced in response to cell damage or infection. They are subdivided into leukotriene B4 (LTB4) and cysteinyl leukotrienes LTC4 and LTD4 (Cys-LTs), depending on the enzyme responsible for their production. Recently, we showed that LTB4 could be a target for purinergic signaling controlling Leishmania amazonensis infection; however, the importance of Cys-LTs in the resolution of infection remained unknown. Mice infected with L. amazonensis are a model of CL infection and drug screening. We found that Cys-LTs control L. amazonensis infection in susceptible (BALB/c) and resistant (C57BL/6) mouse strains. In vitro, Cys-LTs significantly diminished the L. amazonensis infection index in peritoneal macrophages of BALB/c and C57BL/6 mice. In vivo, intralesional treatment with Cys-LTs reduced the lesion size and parasite loads in the infected footpads of C57BL/6 mice. The anti-leishmanial role of Cys-LTs depended on the purinergic P2X7 receptor, as infected cells lacking the receptor did not produce Cys-LTs in response to ATP. These findings suggest the therapeutic potential of LTB4 and Cys-LTs for CL treatment.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis , Mice , Animals , Mice, Inbred C57BL , Leukotrienes/physiology , Leishmaniasis, Cutaneous/drug therapy , Cysteine , Leukotriene B4 , Leishmaniasis/pathology
2.
Curr Pharm Des ; 26(14): 1566-1570, 2020.
Article in English | MEDLINE | ID: mdl-32250218

ABSTRACT

In recent years, the development of new pharmaceutical formulations for the treatment of sporotrichosis has become a relevant research field. In this work, we aimed to develop an emulgel containing itraconazole and clotrimazole to ensure therapeutic effectiveness against Sporothrix brasiliensis. The topical use of a formulation that combines both drugs represents an interesting option for the complementary treatment of sporotrichosis. The emulgel formulation was prepared and evaluated for its zeta potential, viscosity, in vitro antifungal activity and stability at different storage conditions. The results showed that the newly developed emulgel displayed promising physicochemical characteristics, as well as a good in vitro inhibitory activity against S. brasiliensis yeasts. The results obtained in this work suggest that the emulgel containing itraconazole and clotrimazole might highly be efficient and a complementary therapy to oral administration in the treatment of sporotrichosis.


Subject(s)
Antifungal Agents/pharmacology , Clotrimazole/pharmacology , Itraconazole/pharmacology , Sporothrix/chemistry , Sporotrichosis , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Clotrimazole/chemistry , Humans , Itraconazole/chemistry , Microbial Sensitivity Tests , Sporotrichosis/drug therapy
3.
J Pharm Sci ; 109(2): 1026-1034, 2020 02.
Article in English | MEDLINE | ID: mdl-31604084

ABSTRACT

The aim of this study was to develop a microemulsion (ME) formulation containing an association of itraconazole (ITC) and clotrimazole (CLT) as a transdermal delivery system for the treatment of sporotrichosis. Pseudoternary phase diagrams were constructed to optimize the ME formulation. The ME formulation selected contained 1% (w/w) ITC and 1% (w/w) CLT and was composed of 23.07% Tween® 60 (surfactant), 23.07% propylene glycol (cosurfactant/cosolvent), 30.77% benzyl alcohol (oil), and 21.09% water. The ITC/CLT-loaded ME (ITC/CLT-ME) had a droplet size value of 217 ± 0.9 nm, with a polydispersity index of 0.5 ± 0.1. Permeation experiments on pig ear skin were conducted for ITC/CLT-ME, and the results indicated that the drug permeation performance was influenced by CLT, indicating that CLT acts as a promoter enhancer. In the in vitro antifungal activity assay using Sporothrix brasiliensis yeast, the inhibition halo produced by ITC/CLT-ME exhibited a mean diameter of 43.67 ± 2.31 mm. The ITC/CLT-ME formulation did not cause skin irritation in mice. The results suggest that ITC/CLT-ME is a promising tool for the transdermal treatment of sporotrichosis.


Subject(s)
Clotrimazole , Sporotrichosis , Administration, Cutaneous , Animals , Emulsions , Itraconazole , Mice , Sporothrix , Sporotrichosis/drug therapy , Surface-Active Agents , Swine
4.
Molecules ; 24(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242573

ABSTRACT

Sporotrichosis occurs worldwide and is caused by the fungus Sporothrix brasiliensis. This agent has a high zoonotic potential and is transmitted mainly by bites and scratches from infected felines. A new association between the drugs clotrimazole and itraconazole is shown to be effective against S. brasiliensis yeasts. This association was formulated as a microemulsion containing benzyl alcohol as oil, Tween® 60 and propylene glycol as surfactant and cosurfactant, respectively, and water. Initially, the compatibility between clotrimazole and itraconazole was studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (PXRD). Additionally, a simple and efficient analytical HPLC method was developed to simultaneously determine the concentration of clotrimazole and itraconazole in the novel microemulsion. The developed method proved to be efficient, robust, and reproducible for both components of the microemulsion. We also performed an accelerated stability study of this formulation, and the developed analytical method was applied to monitor the content of active ingredients. Interestingly, these investigations led to the detection of a known clotrimazole degradation product whose structure was confirmed using NMR and HRMS, as well as a possible interaction between itraconazole and benzyl alcohol.


Subject(s)
Clotrimazole/chemistry , Clotrimazole/pharmacology , Drug Compounding , Emulsions/chemistry , Itraconazole/chemistry , Itraconazole/pharmacology , Sporotrichosis/drug therapy , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Calorimetry, Differential Scanning , Clotrimazole/analysis , Drug Interactions , Drug Stability , Itraconazole/analysis , Molecular Structure , Sensitivity and Specificity , Structure-Activity Relationship , Thermogravimetry
5.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866442

ABSTRACT

Sporotrichosis is a neglected fungal infection caused by Sporothrix spp., which have a worldwide distribution. The standard antifungal itraconazole has been recommended as a first-line therapy. However, failure cases in human and feline treatment have been reported in recent years. This study aimed to synthesize several α- and ß-2,3-dihydrofuranaphthoquinones and evaluate them against Sporothrix schenckii and Sporothrix brasiliensis-the main etiological agents of sporotrichosis in Brazil. The stability of these compounds was also investigated under different storage conditions for 3 months. The samples were removed at 0, 60, and 90 days and assessed by ¹H-NMR, and their in vitro antifungal susceptibility was tested. Furthermore, we evaluated the superficial changes caused by the most effective and stable compounds using scanning electron microscopy and determined their effects when combined with itraconazole. Nine dihydrofuranaphthoquinones showed good antifungal activity and stability, with MIC values of 2⁻32 µM. Compounds 6 and 10 were the most active dihydrofuranaphthoquinones in vitro for both species; in fungi, these compounds induced yeast⁻hyphae conversion and alteration in the hyphae and conidia structures. Compound 10 also exhibited a synergistic activity with itraconazole against S. schenckii, with a ΣFIC index value of 0.3. Our results indicate that Compounds 6 and 10 are potential candidates for the development of new antifungal agents for the treatment of sporotrichosis.


Subject(s)
Antifungal Agents/chemical synthesis , Furans/chemical synthesis , Itraconazole/pharmacology , Naphthoquinones/chemical synthesis , Sporothrix/drug effects , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Brazil , Drug Stability , Drug Synergism , Furans/chemistry , Furans/pharmacology , Humans , Hyphae/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Structure , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Spores, Fungal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...