Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Orthop ; 56: 1-5, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38707966

ABSTRACT

Background: The analysis of gait is an important tool for evaluating postoperative outcomes of a Total Knee Replacement (TKR). There are few studies which have evaluated the gait parameters of a Kinematic retaining (Kr) prosthesis. This study therefore aims to investigate the kinetic and kinematic differences of running and walking, in the ankle, knee and hip joints in patients who underwent a Kr TKR. Methods: This study assessed the gait of 12 patients with physica lima Kr TKRs at 1 year follow up and 8 healthy controls using 3D video analysis. Data was collected on the kinetics and kinematics of walking and running at the ankle, knee and hip. Comparison was made between the operated and non-operated limbs of the patients, and between the operated and control limbs. Results: Gait analysis showed no statistically significant difference in the hip, ankle and knee angles or moments between the non-operated and operated legs during walking and running. However, there was a statistically significant difference between the knee angles of initial contact, maximum flexion during stance and swing in the TKR knees vs controls in walking and running. Similarly, there was also a statistically significantly higher max knee flexion moment between operated knees and controls in both walking and running. Conclusion: This study has shown that a quadriceps avoidance gait persists in patients after TKR, and that there was symmetry and reciprocated gait parameters in non-operated limbs. These findings suggest that Kr TKRs could be capable of replicating normal knee kinematics when running and walking.

2.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257676

ABSTRACT

Using tibial sensors in total knee replacements (TKRs) can enhance patient outcomes and reduce early revision surgeries, benefitting hospitals, the National Health Services (NHS), stakeholders, biomedical companies, surgeons, and patients. Having a sensor that is accurate, precise (over the whole surface), and includes a wide range of loads is important to the success of joint force tracking. This research aims to investigate the accuracy of a novel intraoperative load sensor for use in TKRs. This research used a self-developed load sensor and artificial intelligence (AI). The sensor is compatible with Zimmer's Persona Knee System and adaptable to other knee systems. Accuracy and precision were assessed, comparing medial/lateral compartments inside/outside the sensing area and below/within the training load range. Five points were tested on both sides (medial and lateral), inside and outside of the sensing region, and with a range of loads. The average accuracy of the sensor was 83.41% and 84.63% for the load and location predictions, respectively. The highest accuracy, 99.20%, was recorded from inside the sensing area within the training load values, suggesting that expanding the training load range could enhance overall accuracy. The main outcomes were that (1) the load and location predictions were similar in accuracy and precision (p > 0.05) in both compartments, (2) the accuracy and precision of both predictions inside versus outside of the triangular sensing area were comparable (p > 0.05), and (3) there was a significant difference in the accuracy of load and location predictions (p < 0.05) when the load applied was below the training loading range. The intraoperative load sensor demonstrated good accuracy and precision over the whole surface and over a wide range of load values. Minor improvements to the software could greatly improve the results of the sensor. Having a reliable and robust sensor could greatly improve advancements in all joint surgeries.


Subject(s)
Arthroplasty, Replacement, Knee , Artificial Intelligence , Humans , Knee Joint/surgery , Software , Hospitals
3.
ISA Trans ; 98: 364-381, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31522820

ABSTRACT

The subject of this paper is the review of advanced technology used in hydraulic systems. The technology in question is termed Independent Metering (IM); this is used in hydraulically driven mobile machinery, such as agricultural, construction, municipal, and forestry vehicles. The idea behind the concept is to modify the connection between the actuator, which could be a cylinder or a motor, and a flow control valve. Traditionally, spool hydraulic valves were used to control the fluid flow into and out of hydraulic actuators. This keeps the meter-in and the meter-out of the actuator mechanically connected due to the construction of these valves. This connection makes the control system blind to pressure changes in one of the hydraulic chambers in the actuator. This, in turn, reduces the overall system controllability. It also increases energy losses, especially under an overrunning load. These two main weaknesses led researchers to break this mechanical connection and get into a new technology with different characteristics. The proposed technology was called Independent Metering. New and more complex control techniques can now be applied to the hydraulic systems using this technology that were not possible before or could be applied to more conventional servo design. This paper reviews Independent Metering (IM) and the technologies used or developed in this field to date. The paper reviews the state of art hydraulic technologies and indicates the links between them and IM. It also reviews the different types of hydraulic valves used when implementing IM. This review also discusses some control algorithms, IM layouts, IM challenges, and identifies where further improvements may be achieved.

4.
Prosthet Orthot Int ; 43(1): 62-70, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30051756

ABSTRACT

BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass. OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot. STUDY DESIGN:: Experimental Assessment. METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition. RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance. CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance. CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.


Subject(s)
Amputees/rehabilitation , Artificial Limbs , Foot/surgery , Prosthesis Design/methods , Amputation, Surgical/methods , Biomechanical Phenomena , Energy Metabolism/physiology , Humans , Materials Testing/methods , Models, Anatomic , Risk Factors , Running/physiology
5.
Med Biol Eng Comput ; 56(6): 1003-1011, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29127653

ABSTRACT

Traditional shoulder range of movement (ROM) measurement tools suffer from inaccuracy or from long experimental setup times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a 'frozen' shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291 ± 538 deg2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace. Graphical abstract The aim of this study is to develop and evaluate a single IMU combined with an electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. The assessment tool consists of an IMU sensor, an EMG sensor, a microcontroller and a Bluetooth module. The assessment tool was attached to subjects arm. Individuals were instructed to move their arms with the elbow fully extended. They were then asked to provide the maximal voluntary elevation envelope of the arm in 3D space in multiple attempts starting from a small movement envelope going to the biggest possible in four consecutive circuits. The results showed that there was an average ROM surface area of 27291 ± 538 deg2 among all six healthy individuals and a ROM surface area of 13571 ± 308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace.


Subject(s)
Electromyography/instrumentation , Electromyography/methods , Range of Motion, Articular/physiology , Shoulder/physiology , Adult , Algorithms , Biomechanical Phenomena , Equipment Design , Female , Humans , Male , Signal Processing, Computer-Assisted , Young Adult
6.
J Med Biol Eng ; 37(1): 1-17, 2017.
Article in English | MEDLINE | ID: mdl-28286462

ABSTRACT

Suitable lower-limb prosthetic sockets must provide an adequate distribution of the pressures created from standing and ambulation. A systematic search for articles reporting socket pressure changes in response to device alignment perturbation was carried out, identifying 11 studies. These were then evaluated using the American Academy of Orthotists and Prosthetists guidelines for a state-of-the-science review. Each study used a design where participants acted as their own controls. Results were available for 52 individuals and five forms of alignment perturbation. Four studies were rated as having moderate internal and external validity, the remainder were considered to have low validity. Significant limitations in study design, reporting quality and in representation of results and the suitability of calculations of statistical significance were evident across articles. Despite the high inhomogeneity of study designs, moderate evidence supports repeatable changes in pressure distribution for specific induced changes in component alignment. However, there also appears to be a significant individual component to alignment responses. Future studies should aim to include greater detail in the presentation of results to better support later meta-analyses.

7.
Int Ophthalmol ; 37(5): 1175-1183, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27796730

ABSTRACT

PURPOSE: To gain an insight into the manufacturing and fitting of artificial eyes in children and potential improvements to the process. METHOD: An online qualitative survey was distributed to 39 ocularists/prosthetists in Europe and Canada. Participants were recruited through purposive sampling, specifically maximum variation sampling from the researcher's contacts and an online search. RESULTS: The findings highlighted the current impression technique as being the most difficult yet most important part of the current process for both the ocularist and child patient. Negatively affecting obtaining a good impression, the child patients distress can be reduced by their parents by providing encouragement, reassurance, practicing the insertion and removal of the artificial eye and being matter of fact. Whilst improvements to the current process provided mixed views, the incorporation of current technology was perceived as not being able to meet the requirements to produce aesthetically pleasing artificial eyes. CONCLUSION: The current artificial eye process can be seen as an interaction with its success being dependent on the child patient's acceptance and adjustment which is dependent on the factors associated to the process. Investigation into the needs of the patient and whether technology can improve the process are the next steps in its advancement.


Subject(s)
Delivery of Health Care/organization & administration , Eye, Artificial , Ophthalmology/trends , Prosthesis Fitting/methods , Surveys and Questionnaires , Canada , Child , Europe , Humans , Patient Satisfaction
8.
Prosthet Orthot Int ; 39(4): 300-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24844615

ABSTRACT

BACKGROUND: T44 sprinting with an amputation is still in a state of relative infancy. Future scope for athletic training and prosthetic limb development may be assisted with a better understanding of information derived from T44 athletes when under race-based conditions. OBJECTIVES: To investigate the behaviour of step count and step frequency when under competitive conditions. STUDY DESIGN: The study comprises two elements: (1) a video-based analysis of race-based limb-to-limb symmetry and (2) a video-based analysis of race-based step count. METHODS: Video analysis of several major events from 1996-2012 are assessed for step count and step limb-to-limb symmetry characteristics. RESULTS: The video analysis highlights limb-to-limb imbalances greater than those indicated in the previous literature. A low step count is determined to be desirable for success in the 100-m event. CONCLUSION: Future analysis of athletes with a lower-limb amputation would be worthwhile when placed under race-based conditions as the limb-to-limb behaviour is more exaggerated than those seen in typical studies held within a laboratory setting. The within-event behaviour of step counts requires further investigation to establish where these take place or whether it is a cumulative step length issue. CLINICAL RELEVANCE: This article increases the understanding of the race-based behaviour of amputee athletes and provides more information to contribute to any discussions on the performance of lower-limb prostheses.


Subject(s)
Amputees , Artificial Limbs , Running/physiology , Humans , Leg , Video Recording
9.
Assist Technol ; 26(3): 157-63, 2014.
Article in English | MEDLINE | ID: mdl-26131796

ABSTRACT

Two energy return prosthesis are subjected to three different statically applied loading methods. This initial study proposes that statically applied loading to a sport prosthesis using several controlled methods were statistically robust enough to derive a mechanical stiffness value. However, any predicted stiffness is drawn into question when allowing any movement of the distal end. This uncertainty will make any evaluation or prescription of lower limb prosthesis technology based upon their stiffness incorrect. In addition, the peak calculated stiffness at the expected bodyweight induced ground impact load of a runner is judged the most representative assessment method. This study attempts to build on previous research advocating the need to monitor the performance of prosthesis lower limb technology in disability sport.


Subject(s)
Amputees/rehabilitation , Artificial Limbs , Mechanical Phenomena , Running/physiology , Humans
10.
Prosthet Orthot Int ; 36(3): 306-11, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22918907

ABSTRACT

BACKGROUND: Unique to sport with a disability such as those performed at the Paralympics, the need to improve the performance of lower limb prostheses can conflict with the need to provide an equal opportunity to win whilst still needing to encourage and maximise participation. OBJECTIVES: This paper extends previous research by attempting to propose a method suitable for sports governing bodies to help any functional assessment of sprinting lower limb prosthesis technology in the future. STUDY DESIGN: The study comprises two elements: 1) A historical review and evaluation of drop jump assessment techniques. 2) A pilot test of a candidate using two mechanically different lower limb regions. METHODS: A unilateral drop jump technique is assessed historically as an evaluation technique for sprinters with a lower-limb amputation. Further, a unilateral drop jump using mechanically altered lower limbs is piloted. RESULTS: The historical review provides no evidence to suggest that this technique is not suitable for athlete participants. The pilot trials show a statistically stable and repeatable method of demonstrating a mechanical deficiency of one limb to another. Six jumps are suitable to obtain stable results but the mechanical behaviour of one limb may eventually change based on accumulated fatigue. CONCLUSIONS: The unilateral drop jump is shown to be viable for application to an athlete population with a lower limb unilateral amputation.


Subject(s)
Amputees , Artificial Limbs , Delphi Technique , Running , Sports , Athletic Performance , Biomechanical Phenomena , Fatigue , Humans , Leg/surgery , London , Male , Pilot Projects
11.
Artif Intell Med ; 54(1): 29-41, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21963113

ABSTRACT

OBJECTIVE: It has been recognised in a review of the developments of lower-limb prosthetic socket fitting processes that the future demands new tools to aid in socket fitting. This paper presents the results of research to design and clinically test an artificial intelligence approach, specifically inverse problem analysis, for the determination of the pressures at the limb/prosthetic socket interface during stance and ambulation. METHODS: Inverse problem analysis is based on accurately calculating the external loads or boundary conditions that can generate a known amount of strain, stresses or displacements at pre-determined locations on a structure. In this study a backpropagation artificial neural network (ANN) is designed and validated to predict the interfacial pressures at the residual limb/socket interface from strain data collected from the socket surface. The subject of this investigation was a 45-year-old male unilateral trans-tibial (below-knee) traumatic amputee who had been using a prosthesis for 22 years. RESULTS: When comparing the ANN predicted interfacial pressure on 16 patches within the socket with actual pressures applied to the socket there is shown to be 8.7% difference, validating the methodology. Investigation of varying axial load through the subject's prosthesis, alignment of the subject's prosthesis, and pressure at the limb/socket interface during walking demonstrates that the validated ANN is able to give an accurate full-field study of the static and dynamic interfacial pressure distribution. CONCLUSIONS: To conclude, a methodology has been developed that enables a prosthetist to quantitatively analyse the distribution of pressures within the prosthetic socket in a clinical environment. This will aid in facilitating the "right first time" approach to socket fitting which will benefit both the patient in terms of comfort and the prosthetist, by reducing the time and associated costs of providing a high level of socket fit.


Subject(s)
Artificial Limbs , Neural Networks, Computer , Prosthesis Fitting/methods , Therapy, Computer-Assisted/methods , Biomechanical Phenomena , Computer Simulation , Humans , Male , Middle Aged , Pressure , Stress, Mechanical , Tibia/surgery
12.
Adapt Phys Activ Q ; 28(1): 16-26, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21282845

ABSTRACT

The purpose of this paper is to investigate the role of lower-limb running prostheses and stakeholders' perceptions of fairness in relation to their use in competitive disability sport. A Delphi study was conducted over three rounds to solicit expert opinion in a developing area of knowledge. High levels of consensus were obtained. The findings suggest that the prosthesis is defined as a piece of sporting equipment to restore athletes' function to enable them to take part in disability sport. In addition, the panel determined that the development of this technology should be considered to be integral to the sport's ethos. Crucially, prostheses technology should be monitored and have limits placed upon it to ensure fairness for both participants and stakeholders.


Subject(s)
Artificial Limbs/ethics , Athletic Performance/ethics , Leg , Running/ethics , Consensus , Delphi Technique , Disabled Persons , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...