Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng Part I J Syst Control Eng ; 237(8): 1440-1453, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37692899

ABSTRACT

A deep reinforcement learning application is investigated to control the emissions of a compression ignition diesel engine. The main purpose of this study is to reduce the engine-out nitrogen oxide (NOx) emissions and to minimize fuel consumption while tracking a reference engine load. First, a physics-based engine simulation model is developed in GT-Power and calibrated using experimental data. Using this model and a GT-Power/Simulink co-simulation, a deep deterministic policy gradient is developed. To reduce the risk of an unwanted output, a safety filter is added to the deep reinforcement learning. Based on the simulation results, this filter has no effect on the final trained deep reinforcement learning; however, during the training process, it is crucial to enforce constraints on the controller output. The developed safe reinforcement learning is then compared with an iterative learning controller and a deep neural network-based nonlinear model predictive controller. This comparison shows that the safe reinforcement learning is capable of accurately tracking an arbitrary reference input while the iterative learning controller is limited to a repetitive reference. The comparison between the nonlinear model predictive control and reinforcement learning indicates that for this case reinforcement learning is able to learn the optimal control output directly from the experiment without the need for a model. However, to enforce output constraint for safe learning reinforcement learning, a simple model of system is required. In this work, reinforcement learning was able to reduce NOx emissions more than the nonlinear model predictive control; however, it suffered from slightly higher error in load tracking and a higher fuel consumption.

2.
Int J Engine Res ; 24(2): 536-551, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36776419

ABSTRACT

The internal combustion engine faces increasing societal and governmental pressure to improve both efficiency and engine out emissions. Currently, research has moved from traditional combustion methods to new highly efficient combustion strategies such as Homogeneous Charge Compression Ignition (HCCI). However, predicting the exact value of engine out emissions using conventional physics-based or data-driven models is still a challenge for engine researchers due to the complexity the of combustion and emission formation. Research has focused on using Artificial Neural Networks (ANN) for this problem but ANN's require large training datasets for acceptable accuracy. This work addresses this problem by presenting the development of a simple model for predicting the steady-state emissions of a single cylinder HCCI engine which is created using an metaheuristic optimization based Support Vector Machine (SVM). The selection of input variables to the SVM model is explored using five different feature sets, considering up to seven engine inputs. The best results are achieved with a model combining linear and squared inputs as well as cross correlations and their squares totaling 26 features. In this case the model fit represented by R 2 values were between 0.72 and 0.95. The best model fits were achieved for CO and CO2, while HC and NOx models have reduced model performance. Linear and non-linear SVM models were then compared to an ANN model. This comparison showed that SVM based models were more robust to changes in feature selection and better able to avoid local minimums compared to the ANN models leading to a more consistent model prediction when limited training data is available. The proposed machine learning based HCCI emission models and the feature selection approach provide insight into optimizing the model accuracy while minimizing the computational costs.

SELECTION OF CITATIONS
SEARCH DETAIL
...