Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Health Syst Pharm ; 80(16): 1082-1089, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37210707

ABSTRACT

PURPOSE: To describe the implementation of clinical decision support tools for alerting prescribers of actionable drug-gene interactions in the Veterans Health Administration (VHA). SUMMARY: Drug-gene interactions have been the focus of clinicians for years. Interactions between SCLO1B1 genotype and statin medications are of particular interest as these can inform risk for statin-associated muscle symptoms (SAMS). VHA identified approximately 500,000 new users of statin medications prescribed in VHA in fiscal year 2021, some of whom could benefit from pharmacogenomic testing for the SCLO1B1 gene. In 2019, VHA implemented the Pharmacogenomic Testing for Veterans (PHASER) program to offer panel-based, preemptive pharmacogenomic testing and interpretation. The PHASER panel includes SLCO1B1, and VHA utilized Clinical Pharmacogenomics Implementation Consortium statin guidelines to build its clinical decision support tools. The program's overarching goal is to reduce the risk of adverse drug reactions such as SAMS and improve medication efficacy by alerting practitioners of actionable drug-gene interactions. We describe the development and implementation of decision support for the SLCO1B1 gene as an example of the approach being used for the nearly 40 drug-gene interactions screened for by the panel. CONCLUSION: The VHA PHASER program identifies and addresses drug-gene interactions as an application of precision medicine to reduce veterans' risks for adverse events. The PHASER program's implementation of statin pharmacogenomics utilizes a patient's SCLO1B1 phenotype to alert providers of the risk for SAMS with the statin being prescribed and how to lower that risk through a lower dose or alternative statin selection. The PHASER program may help reduce the number of veterans who experience SAMS and may improve their adherence to statin medications.


Subject(s)
Decision Support Systems, Clinical , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Pharmacogenetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Veterans Health , Precision Medicine
2.
Toxicol Sci ; 106(1): 46-54, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18684773

ABSTRACT

Neurotoxicity is linked with high-dose manganese inhalation. There are few biomarkers that correlate with manganese exposure. Blood manganese concentrations depend upon the magnitude and duration of the manganese exposure and inconsistently reflect manganese exposure concentrations. The objective of this study was to search for novel biomarkers of manganese exposure in the urine and blood obtained from rhesus monkeys following subchronic manganese sulfate (MnSO(4)) inhalation. Liquid chromatography-mass spectrometry was used to identify putative biomarkers. Juvenile rhesus monkeys were exposed 5 days/week to airborne MnSO(4) at 0, 0.06, 0.3, or 1.5 mg Mn/m(3) for 65 exposure days or 1.5 mg Mn/m(3) for 15 or 33 days. Monkeys exposed to MnSO(4) at >or= 0.06 mg Mn/m(3) developed increased brain manganese concentrations. A total of 1097 parent peaks were identified in whole blood and 2462 peaks in urine. Principal component analysis was performed on a subset of 113 peaks that were found to be significantly changed following subchronic manganese exposure. Using the Nearest Centroid analysis, the subset of 113 significantly perturbed components predicted globus pallidus manganese concentrations with 72.9% accuracy for all subchronically exposed monkeys. Using the five confirmed components, the prediction rate for high brain manganese levels remained > 70%. Three of the five identified components, guanosine, disaccharides, and phenylpyruvate, were significantly correlated with brain manganese levels. In all, 27 metabolites with statistically significant expression differences were structurally confirmed by MS-MS methods. Biochemical changes identified in manganese-exposed monkeys included endpoints relate to oxidative stress (e.g., oxidized glutathione) and neurotransmission (aminobutyrate, glutamine, phenylalanine).


Subject(s)
Air Pollutants/toxicity , Biomarkers , Environmental Monitoring , Globus Pallidus/drug effects , Metabolomics , Sulfates/toxicity , Air Pollutants/blood , Air Pollutants/urine , Animals , Biomarkers/blood , Biomarkers/urine , Chromatography, Liquid , Cluster Analysis , Globus Pallidus/metabolism , Inhalation Exposure , Macaca mulatta , Male , Manganese Compounds/blood , Manganese Compounds/urine , Metabolomics/methods , Principal Component Analysis , Sulfates/blood , Sulfates/urine , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...