Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(17): 15098-15105, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35572762

ABSTRACT

The demand for self-healing elastomers is increasing due to the potential opportunities such materials offer in reducing down-time and cost through extended product lifetimes and reduction of waste. However, further understanding of self-healing mechanisms and processes is required in order to develop a wider range of commercially applicable materials with self-healing properties. Epoxidized natural rubber (ENR) is a derivative of polyisoprene. ENR25 and ENR50 are commercially available materials with 25 and 50 mol % epoxidation, respectively. Recently, reports of the use of ENR in self-healing materials have begun to emerge. However, to date, there has been limited analysis of the self-healing mechanism at the molecular level. The aim of this work is to gain understanding of the relevant self-healing mechanisms through systematic characterization and analysis of the effect of cross-linking on the self-healing performance of ENR and natural rubber (NR). In our study, cross-linking of ENR and NR with dicumyl peroxide and sulfur to provide realistic models of commercial rubber formulations is described, and a cross-linking density of 5 × 10-5 mol cm-3 in sulfur-cured ENR is demonstrated to achieve a healing efficiency of 143% for the tensile strength. This work provides the foundation for further modification of ENR, with the goal of understanding and controlling ENR's self-healing ability for future applications.

2.
Med Phys ; 47(2): 352-362, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31724177

ABSTRACT

PURPOSE: Surface-guided radiation therapy (SGRT) is a nonionizing imaging approach for patient setup guidance, intra-fraction monitoring, and automated breath-hold gating of radiation treatments. SGRT employs the premise that the external patient surface correlates to the internal anatomy, to infer the treatment isocenter position at time of treatment delivery. Deformations and posture variations are known to impact the correlation between external and internal anatomy. However, the degree, magnitude, and algorithm dependence of this impact are not intuitive and currently no methods exist to assess this relationship. The primary aim of this work was to develop a framework to investigate and understand how a commercial optical surface imaging system (C-RAD, Uppsala, Sweden), which uses a nonrigid registration algorithm, handles rotations and surface deformations. METHODS: A workflow consisting of a female torso phantom and software-introduced transformations to the corresponding digital reference surface was developed. To benchmark and validate the approach, known rigid translations and rotations were first applied. Relevant breast radiotherapy deformations related to breast size, hunching/arching back, distended/deflated abdomen, and an irregular surface to mimic a cover sheet over the lower part of the torso were investigated. The difference between rigid and deformed surfaces was evaluated as a function of isocenter location. RESULTS: For all introduced rigid body transformations, C-RAD computed isocenter shifts were determined within 1 mm and 1˚. Additional translational shifts to correct for rotations as a function of isocenter location were determined with the same accuracy. For yaw setup errors, the difference in shift corrections between a plan with an isocenter placed in the center of the breast (BrstIso) and one located 12 cm superiorly (SCFIso) was 2.3 mm/1˚ in lateral direction. Pitch setup errors resulted in a difference of 2.1 mm/1˚ in vertical direction. For some of the deformation scenarios, much larger differences up to 16 mm and 7˚ in the calculated shifts between BrstIso and SCFIso were observed that could lead to large unintended gaps or overlap between adjacent matched fields if uncorrected. CONCLUSIONS: The methodology developed lends itself well for quality assurance (QA) of SGRT systems. The deformable C-RAD algorithm determined accurate shifts for rigid transformations, and this was independent of isocenter location. For surface deformations, the position of the isocenter had considerable impact on the registration result. It is recommended to avoid off-axis isocenters during treatment planning to optimally utilize the capabilities of the deformable image registration algorithm, especially when multiple isocenters are used with fields that share a field edge.


Subject(s)
Brachytherapy/methods , Breast/metabolism , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Algorithms , Computer Simulation , Female , Humans , Phantoms, Imaging , Quality Control , Reproducibility of Results , Surface Properties
4.
Behav Pharmacol ; 19(8): 805-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19020415

ABSTRACT

Opioid withdrawal is known to be anxiogenic in humans and, using the elevated plus maze (EPM), was demonstrated to also be anxiogenic in rats. Thus, this study characterizes EPM behaviors of mice during naloxone-precipitated morphine withdrawal. Naloxone did not significantly change EPM behaviors of drug-naïve mice. Additionally, morphine-dependent mice in which withdrawal was not precipitated (i.e. morphine-dependent mice receiving saline) spent less time in the open-arms compared to the controls. Surprisingly, increased open-arm time was observed in morphine-dependent mice undergoing naloxone-precipitated withdrawal. This increase was not because of total motor activity, as no significant differences in total activity were observed. Moreover, morphine dependency was necessary, given that there was not a significant increase in open-arm time for mice undergoing withdrawal from acute morphine. Increased open-arm time during withdrawal is unexpected, given that opioid withdrawal is usually associated with anxiety. Additionally, even in mice, naloxone-precipitated morphine withdrawal is known be aversive and increases plasma corticosterone levels. In conclusion, this study demonstrates somewhat unexpected EPM behavior in mice undergoing naloxone-precipitated morphine withdrawal. Possible interpretations of these EPM results, though somewhat speculative, raise the possibility that EPM behaviors might not be driven exclusively by anxiety levels but rather by other withdrawal-induced behaviors.


Subject(s)
Maze Learning/drug effects , Morphine/adverse effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacokinetics , Narcotics/adverse effects , Substance Withdrawal Syndrome/physiopathology , Animals , Behavior, Animal , Corticosterone/blood , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Substance Withdrawal Syndrome/blood , Substance Withdrawal Syndrome/drug therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...