Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1245864, 2023.
Article in English | MEDLINE | ID: mdl-37850065

ABSTRACT

Introduction: Domoic acid (DA) is a glutaminergic excitatory neurotoxin that causes the morbidity and mortality of California sea lions (Zalophus californianus; CSL) and other marine mammals due to a suite of effects mostly on the nervous and cardiac systems. Between 1998 and 2019, 11,737 live-stranded CSL were admitted to The Marine Mammal Center (TMMC; Sausalito, CA, USA), over 2,000 of which were intoxicated by DA. A plethora of clinical research has been performed over the past 20 years to characterize the range of toxic effects of DA exposure on CSLs, generating the largest dataset on the effects of natural exposure to this toxin in wildlife. Materials and methods: In this study, we review published methods for diagnosing DA intoxication, clinical presentation, and treatment of DA-intoxicated CSL and present a practical, reproducible scoring system called the neuroscore (NS) to help assess whether a DA-affected CSL is fit for release to the wild following rehabilitation. Logistic regression models were used to assess the relationships between outcome (released vs. euthanized or died) and multiple variables to predict the outcome for a subset of 92 stranded CSLs. Results: The largest proportion of DA-intoxicated CSLs was adult females (58.6%). The proportions of acute and chronic cases were 63.5 and 36.5% respectively, with 44% of affected CSL released and 56% either dying naturally or euthanized. The average time in rehabilitation was 15.9 days (range 0-169) for all outcomes. The best-performing model (85% accuracy; area under the curve = 0.90) assessing the relationship between outcome and predictor variables consisted of four variables: final NS, change in NS over time, whether the animal began eating in rehabilitation, and the state of nutrition on admission. Discussion: Our results provide longitudinal information on the symptomatology of CSL intoxicated by domoic acid and suggest that a behavioral scoring system is a useful tool to assess the fitness for the release of DA-intoxicated CSL.

2.
J Exp Zool A Ecol Integr Physiol ; 333(2): 104-110, 2020 02.
Article in English | MEDLINE | ID: mdl-31709773

ABSTRACT

Research using stable isotopes analysis (SIA) of carbon (δ13 C) and nitrogen (δ15 N) in blood components is lacking, because of the challenge of sample collection, processing, and storage in remote areas. There also is a paucity of information regarding the effect of tissue biochemical composition on isotopic ratios with few comparisons among taxa. We collected blood samples from shortfin mako sharks (n = 70; 2016) and Guadalupe fur seals (n = 25; 2017). All samples were centrifuged to obtain plasma from sharks and serum from the Guadalupe fur seals, and all the samples were prepared for SIA and analyzed using a Costech 4010 elemental analyzer interfaced with a Delta V Plus isotope ratio mass spectrometer. We found significant differences between plasma δ13 C values of shortfin mako sharks (-17.6 ± 0.9‰) and serum of Guadalupe fur seals (-20.3 ± 1.2‰), but we did not find any differences for δ15 N values between the two species. The differences in δ13 C values between species are probably due to the specific blood composition and to the different biochemical characteristics and different adaptations within taxa. These findings highlight the importance of further research on the influence of biochemistry features on isotopic results, in this way a more accurate assessment will be possible for this factor, separating it from the dietary influences on stable isotopic values.


Subject(s)
Carbon Isotopes/blood , Fur Seals/blood , Nitrogen Isotopes/blood , Sharks/blood , Animals , Female , Fur Seals/physiology , Male , Mass Spectrometry , Mexico , Sharks/physiology
3.
Harmful Algae ; 59: 1-18, 2016 11.
Article in English | MEDLINE | ID: mdl-28073500

ABSTRACT

Toxic algal events are an annual burden on aquaculture and coastal ecosystems of California. The threat of domoic acid (DA) toxicity to human and wildlife health is the dominant harmful algal bloom (HAB) concern for the region, leading to a strong focus on prediction and mitigation of these blooms and their toxic effects. This paper describes the initial development of the California Harmful Algae Risk Mapping (C-HARM) system that predicts the spatial likelihood of blooms and dangerous levels of DA using a unique blend of numerical models, ecological forecast models of the target group, Pseudo-nitzschia, and satellite ocean color imagery. Data interpolating empirical orthogonal functions (DINEOF) are applied to ocean color imagery to fill in missing data and then used in a multivariate mode with other modeled variables to forecast biogeochemical parameters. Daily predictions (nowcast and forecast maps) are run routinely at the Central and Northern California Ocean Observing System (CeNCOOS) and posted on its public website. Skill assessment of model output for the nowcast data is restricted to nearshore pixels that overlap with routine pier monitoring of HABs in California from 2014 to 2015. Model lead times are best correlated with DA measured with solid phase adsorption toxin tracking (SPATT) and marine mammal strandings from DA toxicosis, suggesting long-term benefits of the HAB predictions to decision-making. Over the next three years, the C-HARM application system will be incorporated into the NOAA operational HAB forecasting system and HAB Bulletin.


Subject(s)
Environmental Monitoring/methods , Environmental Monitoring/standards , Harmful Algal Bloom , Risk Assessment/methods , Seawater/analysis , California , Ecosystem , Kainic Acid/analogs & derivatives , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...