Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Appl Opt ; 53(4): 736-47, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514192

ABSTRACT

We compare results for the UV index (UVI), the total ozone column (TOC), and the radiation modification factor (RMF, being 1 in the absence of clouds and aerosols) at four sites on the Tibetan Plateau. The results were obtained by analyzing ground measurements by multichannel moderate-bandwidth filter instruments for the period July 2008-September 2010, and radiative transfer modeling was used to aid the interpretation of the results. The highest UVI of 20.6 was measured in Tingri (28.7°N; 4335 m). For July, monthly mean UVI values were 14.5 and 12.9 in Tingri and Lhasa (29.7°N; 3683 m), respectively. Generally, the UVI levels in Tingri and Lhasa were higher than in Nagchu (31.5°N; 4510 m) and Linzhi (29.7°N; 2995 m), due to less cloud cover at the former two sites. In 2009, the annual mean UVI and RMF values were 6.8 and 0.7 for Linzhi, 8.8 and 0.92 for Lhasa, 10.5 and 0.92 for Tingri, and 6.7 and 0.7 for Nagchu. Radiative transfer simulations indicate that the latitude difference would correspond to an increase in the UVI of about 0.3 from Nagchu to Tingri; whereas, the altitude difference would correspond to a reduction of about 1.5%, implying that the observed difference is due to the difference in cloud cover. The annual mean TOC values were found to be 260-264 Dobson units (DU) in Lhasa, Linzhi, and Nagchu, and 252 DU in Tingri. TOC values in Lhasa were found to agree within 3% with those derived from Ozone Monitoring Instrument (OMI) measurements.

2.
Photochem Photobiol ; 85(4): 1028-31, 2009.
Article in English | MEDLINE | ID: mdl-19508646

ABSTRACT

UVB from the sun and intake from food are the only human sources of vitamin D. Tibet is a unique region for comparisons of these sources: (1) it lies at a low latitude and at a high altitude and has very large annual fluences of UVB; (2) the traditional Tibetan food is poor in vitamin D. Blood samples were taken from 63 persons of different age, with different occupations and staying at different places. UVB doses at these places were measured. The samples were analyzed by a standard radioimmune assay for determination of the serum concentration of 25 hydroxyvitamin D (25(OH)D). The main finding was that among nomads, there seems to be severe vitamin D deficiency (serum levels of 25(OH)D<30 nM). We tentatively propose that the low level of 25(OH)D of nomads is related to their clothing and sun exposure habits. For persons of other occupations (students, teachers and farmers) the levels are higher, although a significant fraction of these persons also have lower levels than 75 nm, by many regarded as a limit for insufficiency related to a number of negative health conditions. The annual dose of vitamin D-generating UVB is about five times larger in Lhasa than in Oslo. Despite this, the average vitamin D status seems to be similar, except in the case of nomads. This phenomenon is certainly related to food habits. In conclusion, the 25(OH)D status among nomads in Tibet appears to be alarmingly low. However, for people of other occupations the status is more normal.


Subject(s)
Vitamin D/blood , Humans , Tibet , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...