Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38541558

ABSTRACT

Thermoplastic polymers exhibit relatively limited surface energies and this results in poor adhesion when bonded to other materials. Plasma surface modification offers the potential to overcome this challenge through the functionalisation of the polymer surfaces. In this study, three polymers of differing hydrophobicity (HDPE, PA12, and PA6) were subjected to a novel, atmospheric, µPlasma surface treatment technique, and its effectiveness at increasing the surface energies was evaluated via measurement of the contact angle. To characterise the physical and chemical changes following µPlasma surface modification, the surface morphology was observed using atomic force microscopy (AFM), and the functionalisation of the surface was evaluated using infrared spectroscopy. Immediately after treatment, the contact angle decreased by 47.3° (HDPE), 42.6° (PA12), and 50.1° (PA6), but the effect was not permanent in that there was a pronounced relaxation or ageing phenomenon in operation. The ageing process over five hours was modelled using a modified stretched exponential function Kohlrausch-Williams-Watts (KWW) model, and it was found that the ageing rate was dependent on the hydrophilicity of polymers, with polyamides ageing more rapidly than polyethylene.

SELECTION OF CITATIONS
SEARCH DETAIL
...