Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14536, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977717

ABSTRACT

Accelerated warming since the 1950s has caused dramatic change to ice shelves and outlet glaciers on the Antarctic Peninsula. Long observational records of ice loss in Antarctica are rare but essential to accurately inform mass balance estimates of glaciers. Here, we use aerial images from 1968 to reveal glacier configurations in the Larsen B region. We use structure-from-motion photogrammetry to construct high-resolution (3.2 m at best) elevation models covering up to 91% of Jorum, Crane, Mapple, Melville and Flask Glaciers. The historical elevation models provide glacier geometries decades before the Larsen B Ice Shelf collapse in 2002, allowing the determination of pre-collapse and post-collapse elevation differences. Results confirm that these five tributary glaciers of the former Larsen B Ice Shelf were relatively stable between 1968 and 2001. However, the net surface elevation differences over grounded ice between 1968 and 2021 equate to 35.3 ± 1.2 Gt of ice loss related to dynamic changes after the ice shelf removal. Archived imagery is an underutilised resource in Antarctica and was crucial here to observe glacier geometry in high-resolution decades before significant changes to ice dynamics.

2.
J Proteome Res ; 23(6): 1970-1982, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38718259

ABSTRACT

Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.


Subject(s)
Lamin Type A , Mutation , Proteomics , Lamin Type A/genetics , Lamin Type A/metabolism , Humans , Proteomics/methods , HEK293 Cells , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Proteome/genetics , Proteome/metabolism , Gene Ontology
3.
J Neurophysiol ; 128(4): 854-871, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36043804

ABSTRACT

Recent studies have shown that adaptation to visual feedback perturbations during arm reaching movements involves implicit and explicit learning components. Evidence also suggests that explicit, intentional learning mechanisms are largely responsible for savings-a faster recalibration compared with initial training. However, the extent explicit learning mechanisms facilitate learning and early savings (i.e., the rapid recall of previous performance) for motion state-dependent learning is generally unknown. To address this question, we compared the early savings/recall achieved by two groups of human subjects. One experienced physical perturbations (a velocity-dependent force-field, vFF) to promote adaptation that is thought to be a largely implicit process. The second was only given visual feedback of the required force-velocity relationship; subjects moved in force channels and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based on the movement velocity. Thus, subjects were shown explicit information on the extent the applied temporal pattern of force matched the required velocity-dependent force profile if the force-field perturbation had been applied. After training, both groups experienced a decay and washout period, which was followed by a reexposure block to assess early savings/recall. Although decay was faster for the explicit visual feedback group, the single-trial recall was similar to the physical perturbation group. Thus, compared with visual feedback perturbations, conscious modification of motor output based on motion state-dependent feedback demonstrates rapid recall, but this adjustment is less stable than adaptation based on experiencing the multisensory errors that accompany physical perturbations.NEW & NOTEWORTHY The extent explicit feedback facilitates motion state-dependent changes to motor output is largely unknown. Here, we examined motor adaptation for subjects that experienced physical perturbations and another that made adjustments based on explicit visual feedback information of the required force-velocity relationship. Our results suggest that adjustment of motor output can be based on explicit motion state-dependent information and demonstrates rapid recall, but this learning is less stable than adaptation based on physical perturbations to movement.


Subject(s)
Feedback, Sensory , Psychomotor Performance , Adaptation, Physiological , Humans , Learning , Movement
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6110-6115, 2021 11.
Article in English | MEDLINE | ID: mdl-34892511

ABSTRACT

Research using nonhuman primate models for human disease frequently requires behavioral observational techniques to quantify functional outcomes. The ability to assess reaching and grasping patterns is of particular interest in clinical conditions that affect the motor system (e.g., spinal cord injury, SCI). Here we explored the use of DeepLabCut, an open-source deep learning toolset, in combination with a standard behavioral task (Brinkman Board) to quantify nonhuman primate performance in precision grasping. We examined one male rhesus macaque (Macaca mulatta) in the task which involved retrieving rewards from variously-oriented shallow wells. Simultaneous recordings were made using GoPro Hero7 Black cameras (resolution 1920 x 1080 at 120 fps) from two different angles (from the side and top of the hand motion). The task/device design necessitates use of the right hand to complete the task. Two neural networks (corresponding to the top and side view cameras) were trained using 400 manually annotated images, tracking 19 unique landmarks each. Based on previous reports, this produced sufficient tracking (Side: trained pixel error of 2.15, test pixel error of 11.25; Top: trained pixel error of 2.06, test pixel error of 30.31) so that landmarks could be tracked on the remaining frames. Landmarks included in the tracking were the spatial location of the knuckles and the fingernails of each digit, and three different behavioral measures were quantified for assessment of hand movement (finger separation, middle digit extension and preshaping distance). Together, our preliminary results suggest that this markerless approach is a possible method to examine specific kinematic features of dexterous function.Clinical Relevance- The methodology presented below allows for the markerless tracking of kinematic features of dexterous finger movement by non-human primates. This method could allow for direct comparisons between human patients and non-human primate models of clinical conditions (e.g., spinal cord injury). This would provide objective quantitative metrics and crucial information for assessing movement impairments across populations and the potential translation of treatments, interventions and their outcomes.


Subject(s)
Fingers , Movement , Animals , Biomechanical Phenomena , Hand , Humans , Macaca mulatta , Male
5.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34580156

ABSTRACT

Normal aging is associated with a decline in memory and motor learning ability. However, the exact form of these impairments (e.g., the short-term temporal stability and affected learning mechanisms) is largely unknown. Here, we used a sensorimotor adaptation task to examine changes in the temporal stability of two forms of learning (explicit and implicit) because of normal aging. Healthy young subjects (age range, 19-28 years; 20 individuals) and older human subjects (age range, 63-85 years; 19 individuals) made reaching movements in response to altered visual feedback. On each trial, subjects turned a rotation dial to select an explicit aiming direction. Once selected, the display was removed and subjects moved the cursor from the start position to the target. After initial training with the rotational feedback perturbation, subjects completed a series of probe trials at different delay periods to systematically assess the short-term retention of learning. For both groups, the explicit aiming showed no significant decrease over 1.5 min. However, this was not the case for implicit learning; the decay pattern was markedly different between groups. Older subjects showed a linear decrease of the implicit component of adaptation over time, while young subjects showed an exponential decay over the same period (time constant, 25.61 s). Although older subjects adapted at a similar rate, these results suggest natural aging selectively impacts the short-term (seconds to minutes) temporal stability of implicit motor learning mechanisms. This understanding may provide a means to dissociate natural aging memory impairments from deficits caused by brain disorders that progress with aging.


Subject(s)
Adaptation, Physiological , Psychomotor Performance , Adult , Aged , Aged, 80 and over , Aging , Feedback, Sensory , Humans , Learning , Middle Aged , Young Adult
6.
Environ Sci Technol ; 50(13): 7047-55, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27244276

ABSTRACT

There is conclusive evidence that the methods most commonly used to sample methane (CH4) dissolved in the pore water of lake sediments produce results that are likely to be affected by gas loss or gas exchange with the atmosphere. To determine the in situ amount of CH4 per unit mass of pore water in sediments, we developed and validated a new method that combines techniques developed for noble-gas analysis in pore waters with a standard headspace technique to quantify the CH4 present in the pore space in dissolved and gaseous form. The method was tested at two sites: Lake Lungern, where CH4 concentrations were close to saturation; and Lake Rotsee, where CH4 concentrations are known to exceed saturation and where CH4 bubble formation and gas ebullition are commonly observed. We demonstrate that the new method, in contrast to the available methods, more reliably captures the total amount of CH4 per unit mass of pore water consisting of both dissolved and free CH4 (i.e., gas bubbles) in the pore space of the sediment.


Subject(s)
Lakes , Methane , Atmosphere , Gases
7.
Glob Chang Biol ; 22(2): 682-703, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26598217

ABSTRACT

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.


Subject(s)
Climate Change/history , Models, Theoretical , Climate , History, 20th Century , Models, Statistical , Principal Component Analysis , Temperature , Volcanic Eruptions
8.
Glob Chang Biol ; 20(3): 811-23, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24038822

ABSTRACT

The (Lower) Lake of Zurich provides an ideal system for studying the long-term impact of environmental change on deep-water hypoxia because of its sensitivity to climatic forcing, its history of eutrophication and subsequent oligotrophication, and the quality and length of its data set. Based on 39 years (1972-2010) of measured profiles of temperature, oxygen concentration and phosphorus (P) concentration, the potentially confounding effects of oligotrophication and climatic forcing on the occurrence and extent of deep-water hypoxia in the lake were investigated. The time-series of Nürnberg's hypoxic factor (HF) for the lake can be divided into three distinct segments: (i) a segment of consistently low HF from 1972 to the late-1980s climate regime shift (CRS); (ii) a transitional segment between the late-1980s CRS and approximately 2000 within which the HF was highly variable; and (iii) a segment of consistently high HF thereafter. The increase in hypoxia during the study period was not a consequence of a change in trophic status, as the lake underwent oligotrophication as a result of reduced external P loading during this time. Instead, wavelet analysis suggests that changes in the lake's mixing regime, initiated by the late-1980s CRS, ultimately led to a delayed but abrupt decrease in the deep-water oxygen concentration, resulting in a general expansion of the hypoxic zone in autumn. Even after detrending to remove long-term effects, the concentration of soluble reactive P in the bottom water of the lake was highly correlated with various measures of hypoxia, providing quantitative evidence supporting the probable effect of hypoxia on internal P loading. Such climate-induced, ecosystem-scale changes, which may result in undesirable effects such as a decline in water quality and a reduction in coldwater fish habitats, provide further evidence for the vulnerability of large temperate lakes to predicted increases in global air temperature.


Subject(s)
Lakes/chemistry , Oxygen/analysis , Phosphorus/analysis , Climate Change , Environmental Monitoring , Phosphorus/chemistry , Solubility , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...