Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 10(8): 3622-3634, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31282647

ABSTRACT

Methamphetamine (METH) is a globally abused, highly addictive stimulant. While investigations of the rewarding and motivational effects of METH have focused on neuronal actions, increasing evidence suggests that METH can also target microglia, the innate immune cells of the central nervous system, causing release of proinflammatory mediators and therefore amplifying the reward changes in the neuronal activity induced by METH. However, how METH induces neuroinflammatory responses within the central nervous system (CNS) is unknown. Herein, we provide direct evidence that METH creates neuroinflammation, at least in part, via the activation of the innate immune Toll-like receptor 4 (TLR4). Biophysical studies revealed that METH bound to MD-2, the key coreceptor of TLR4. Molecular dynamics simulations showed METH binding stabilized the active heterotetramer (TLR4/MD-2)2 conformation. Classic TLR4 antagonists LPS-RS and TAK-242 attenuated METH induced NF-κB activation of microglia, whereas added MD-2 protein boosted METH-induced NF-κB activation. Systemically administered METH (1 mg/kg) was found to specifically up-regulate expression of both CD11b (microglial activation marker) and the proinflammatory cytokine interleukin 6 (IL-6) mRNAs in the ventral tegmental area (VTA), but not in either the nucleus accumbens shell (NAc) or prefrontal cortex (PFC). Systemic administration of a nonopioid, blood-brain barrier permeable TLR4 antagonist (+)-naloxone inhibited METH-induced activation of microglia and IL-6 mRNA overexpression in VTA. METH was found to increase conditioned place preference (CPP) as well as extracellular dopamine concentrations in the NAc, with both effects suppressed by the nonopioid TLR4 antagonist (+)-naloxone. Furthermore, intra-VTA injection of LPS-RS or IL-6 neutralizing antibody suppressed METH-induced elevation of extracellular NAc dopamine. Taken together, this series of studies demonstrate that METH-induced neuroinflammation is, at least in part, mediated by TLR4-IL6 signaling within the VTA, which has the downstream effect of elevating dopamine in the NAc shell. These results provide a novel understanding of the neurobiological mechanisms underlying acute METH reward that includes a critical role for central immune signaling and offers a new target for medication development for treating drug abuse.


Subject(s)
Central Nervous System Stimulants/pharmacology , Dopamine/metabolism , Lymphocyte Antigen 96/metabolism , Methamphetamine/pharmacology , Nucleus Accumbens/drug effects , Toll-Like Receptor 4/metabolism , Ventral Tegmental Area/drug effects , Animals , Male , Microglia/drug effects , Microglia/metabolism , Molecular Dynamics Simulation , NF-kappa B/metabolism , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Ventral Tegmental Area/metabolism
2.
Brain Behav Immun ; 67: 130-138, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28813640

ABSTRACT

Cocaine addiction is a chronic relapsing disorder characterized by persistent perturbations to an organism's homeostatic processes that result in maladaptive drug seeking. Although considerable attention has been directed at the consequences of neuronal changes following chronic cocaine taking, few studies have examined the role of microglia, the brain's resident immune cells, following chronic cocaine administration. Toll-Like Receptor 4 (TLR4) is a molecular pattern receptor that recognizes pathogens, danger signals, and xenobiotics and induces proinflammatory signaling in the central nervous system. TLR4 is generally considered to be expressed primarily by microglia. Here, we used a rodent model of cocaine addiction to investigate the role of TLR4 in the ventral tegmental area (VTA) in cocaine seeking. Male Sprague-Dawley rats were trained to self-administer cocaine in daily 2-h sessions for 15days. Following self-administration, rats underwent extinction training and were tested in a drug-primed reinstatement paradigm. Pharmacological antagonism of TLR4 in the VTA using lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS) significantly reduced cocaine-primed reinstatement of drug seeking but had no effect on sucrose seeking. TLR4 activation within the VTA using the TLR4 activator, lipopolysaccharide, was sufficient to moderately reinstate cocaine seeking. We also assessed changes in proinflammatory cytokine expression in the VTA following cocaine self-administration. Cocaine self-administration increased the expression of mRNA for the proinflammatory cytokine interleukin-1ß, but not tumor necrosis factor alpha, in the VTA. Pharmacological antagonism of the interleukin-1 receptor in the VTA reduced cocaine-primed drug seeking. These results are consistent with the hypothesis that chronic cocaine produces inflammatory signaling that contributes to cocaine seeking.


Subject(s)
Cocaine/administration & dosage , Drug-Seeking Behavior , Encephalitis/immunology , Immunity, Innate , Ventral Tegmental Area/immunology , Animals , Conditioning, Operant , Encephalitis/metabolism , Extinction, Psychological/drug effects , Interleukin-1beta/metabolism , Male , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Self Administration , Signal Transduction , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
3.
Brain ; 132(Pt 9): 2478-86, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19567702

ABSTRACT

Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.


Subject(s)
Epilepsy/immunology , Somatosensory Cortex/immunology , Animals , Anticonvulsants/therapeutic use , Brain Mapping/methods , Disease Models, Animal , Electric Stimulation/methods , Epilepsy/prevention & control , Evoked Potentials, Somatosensory/immunology , Immunity, Innate/physiology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1/immunology , Lipopolysaccharides/metabolism , Male , Neuroglia/immunology , Neuroimmunomodulation/immunology , Neuroimmunomodulation/physiology , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism
4.
Brain Behav Immun ; 23(2): 240-50, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18938237

ABSTRACT

Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused three-to-five-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, while improving analgesia.


Subject(s)
Analgesia/psychology , Analgesics, Opioid/adverse effects , Brain/metabolism , Pyridines/pharmacology , Substance Withdrawal Syndrome/physiopathology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Brain/drug effects , Brain/immunology , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacology , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Injections, Intraperitoneal , Male , Minocycline/administration & dosage , Minocycline/pharmacology , Morphine/adverse effects , Naloxone/adverse effects , Opioid-Related Disorders/etiology , Opioid-Related Disorders/metabolism , Opioid-Related Disorders/physiopathology , Opioid-Related Disorders/psychology , Oxycodone/adverse effects , Pain/physiopathology , Pain/psychology , Pain Measurement , Pyridines/administration & dosage , Rats , Rats, Sprague-Dawley , Substance Withdrawal Syndrome/etiology , Substance Withdrawal Syndrome/metabolism , Weight Loss/drug effects
5.
Brain Behav Immun ; 22(8): 1248-56, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18706994

ABSTRACT

Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here, we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force, and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation.


Subject(s)
Analgesia , Minocycline/pharmacology , Morphine/pharmacology , Respiratory Insufficiency/drug therapy , Reward , Analysis of Variance , Animals , Cell Line , Cells, Cultured , Conditioning, Operant/drug effects , Cyclooxygenase 1/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Male , Microglia/drug effects , Microglia/metabolism , Minocycline/therapeutic use , Narcotics/pharmacology , Pain/drug therapy , Pain Measurement , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/chemically induced , Reverse Transcriptase Polymerase Chain Reaction , Spatial Behavior/drug effects
6.
Brain Behav Immun ; 22(4): 451-5, 2008 May.
Article in English | MEDLINE | ID: mdl-17997277

ABSTRACT

Neonatal bacterial infection in rats leads to profound hippocampal-dependent memory impairments following a peripheral immune challenge in adulthood. Here, we determined whether neonatal infection plus an immune challenge in adult rats is associated with impaired induction of brain-derived neurotrophic factor (BDNF) within the hippocampus (CA1, CA3, and dentate gyrus) following fear conditioning. BDNF is well characterized for its critical role in learning and memory. Rats injected on postnatal day 4 with PBS (vehicle) or Escherichia coli received as adults either no conditioning or a single 2min trial of fear conditioning. Half of the rats in the conditioned group then received a peripheral injection of 25mug/kg lipopolysaccharide (LPS) and all were sacrificed 1 or 4h later. Basal (unconditioned) BDNF mRNA did not differ between groups. However, following conditioning, neonatal infection with E. coli led to decreased BDNF mRNA induction in all regions compared to PBS-treated rats. This decrease in E. coli-treated rats was accompanied by a large increase in IL-1beta mRNA in CA1. Taken together, these data indicate that early infection strongly influences the induction of IL-1beta and BDNF within distinct regions of the hippocampus, which likely contribute to observed memory impairments in adulthood.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Conditioning, Psychological/physiology , Escherichia coli Infections/immunology , Escherichia coli Infections/physiopathology , Hippocampus/immunology , Interleukin-1beta/genetics , Age Factors , Animals , Animals, Newborn , Endotoxemia/immunology , Endotoxemia/physiopathology , Fear/physiology , Female , Gene Expression Regulation/immunology , Lipopolysaccharides/pharmacology , Male , Memory Disorders/immunology , Memory Disorders/physiopathology , RNA, Messenger/immunology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...