Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Sci Adv ; 10(29): eadk1817, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018390

ABSTRACT

Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.


Subject(s)
Brain Ischemia , Diffusion Magnetic Resonance Imaging , Animals , Diffusion Magnetic Resonance Imaging/methods , Mice , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Brain Ischemia/metabolism , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Disease Models, Animal , Male
2.
J Pediatr ; 273: 114158, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889855

ABSTRACT

OBJECTIVE: To determine whether an enteral, clonidine-based sedation strategy (CLON) during therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy would decrease opiate use while maintaining similar short-term safety and efficacy profiles to a morphine-based strategy (MOR). STUDY DESIGN: This was a single-center, observational study conducted at a level IV neonatal intensive care unit from January 1, 2017, to October 1, 2021. From April 13, 2020, to August 13, 2020, we transitioned from MOR to CLON. Thus, patients receiving TH for hypoxic-ischemic encephalopathy were grouped to MOR (before April 13, 2020) and CLON (after August 13, 2020). We calculated the total and rescue morphine milligram equivalent/kg (primary outcome) and frequency of hemodynamic changes (secondary outcome) for both groups. RESULTS: The MOR and CLON groups (74 and 25 neonates, respectively) had similar baseline characteristics and need for rescue sedative intravenous infusion (21.6% MOR and 20% CLON). Both morphine milligram equivalent/kg and need for rescue opiates (combined bolus and infusions) were greater in MOR than CLON (P < .001). As days in TH advanced, a lower percentage of patients receiving CLON needed rescue opiates (92% on day 1 to 68% on day 3). Patients receiving MOR received a greater cumulative dose of dopamine and more frequently required a second inotrope and hydrocortisone for hypotension. MOR had a lower respiratory rate during TH (P = .01 vs CLON). CONCLUSIONS: Our CLON protocol is noninferior to MOR, maintaining perceived effectiveness and hemodynamic safety, with an apparently reduced need for opiates and inotropes.

4.
J Perinatol ; 44(4): 532-538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326606

ABSTRACT

INTRODUCTION: There is an extensive body of research regarding neurological outcomes following neonatal hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH), with limited data on growth outcomes. We examined perinatal characteristics associated with postnatal growth in this population. METHODS: Convenience cohort of 66 infants with HIE who underwent TH and participated in follow-up at 24 months of age were included. Regression modeling including perinatal anthropomorphics, markers of HIE, and systemic injury was used to evaluate growth at 24 months. RESULTS: Birth head circumference was associated with weight (p = 0.036). MRI severity, pH at admission and birth head circumference were associated with height (p = 0.043, p = 0.015 and p = 0.043 respectively). MRI severity and length of intubation were associated with head circumference (p = 0.038 and p < 0.001 respectively). CONCLUSION: There was a significant association between specific early factors and growth at 24 months among infants with HIE treated with TH.


Subject(s)
Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Pregnancy , Female , Humans , Child, Preschool , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/complications , Hypothermia/complications , Cephalometry
5.
Dev Neurosci ; 46(2): 136-144, 2024.
Article in English | MEDLINE | ID: mdl-37467736

ABSTRACT

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.


Subject(s)
Electroencephalography , Hypoxia-Ischemia, Brain , Infant, Newborn , Child , Humans , Pilot Projects , Electroencephalography/methods , Seizures , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/therapy , Biomarkers
6.
Dev Neurosci ; 46(1): 55-68, 2024.
Article in English | MEDLINE | ID: mdl-37231858

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Subject(s)
Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Infant, Newborn , Humans , Diffusion Tensor Imaging/methods , Prognosis , Hypoxia-Ischemia, Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Edema/complications , Edema/pathology
8.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609182

ABSTRACT

Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.

10.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333301

ABSTRACT

Organisms have homeostatic mechanisms to respond to cold temperature to ensure survival including the activation of the mammalian neuroprotective mild hypothermia response (MHR) at 32°C. We show activation of the MHR at euthermia by an FDA-approved medication Entacapone, proof-of-principle that the MHR can be medically manipulated. Utilizing a forward CRISPR-Cas9 mutagenesis screen, we identify the histone lysine methyltransferase SMYD5 as an epigenetic gatekeeper of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia but not at 32°C. This repression is mirrored by temperature-dependent levels of H3K36me3 at the SP1-locus and globally indicating that the mammalian MHR is regulated at the level of histone modifications. We identified 45 additional SMYD5-temperature dependent genes suggesting a broader MHR-related role for SMYD5. Our study provides an example of how the epigenetic machinery integrates environmental cues into the genetic circuitry of mammalian cells and suggests novel therapeutic avenues for neuroprotection after catastrophic events.

11.
Pediatr Res ; 94(6): 1958-1965, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37340101

ABSTRACT

BACKGROUND: Extremely low birth weight (ELBW) infants comprise a fragile population at risk for neurodevelopmental disabilities (NDD). Systemic steroids were previously associated with NDD, but more recent studies suggest hydrocortisone (HCT) may improve survival without increasing NDD. However, the effects of HCT on head growth adjusted for illness severity during NICU hospitalization are unknown. Thus, we hypothesize that HCT will protect head growth, accounting for illness severity using a modified neonatal Sequential Organ Failure Assessment (M-nSOFA) score. METHODS: We conducted a retrospective study that included infants born at 23-29 weeks gestational age (GA) and < 1000 g. Our study included 73 infants, 41% of whom received HCT. RESULTS: We found negative correlations between growth parameters and age, similar between HCT and control patients. HCT-exposed infants had lower GA but similar normalized birth weights; HCT-exposed infants also had higher illness severity and longer lengths of hospital stay. We found an interaction between HCT exposure and illness severity on head growth, such that infants exposed to HCT had better head growth compared to those not exposed to HCT when adjusted for illness severity. CONCLUSION: These findings emphasize the importance of considering patient illness severity and suggest that HCT use may offer additional benefits not previously considered. IMPACT: This is the first study to assess the relationship between head growth and illness severity in extremely preterm infants with extremely low birth weights during their initial NICU hospitalization. Infants exposed to hydrocortisone (HCT) were overall more ill than those not exposed, yet HCT exposed infants had better preserved head growth relative to illness severity. Better understanding of the effects of HCT exposure on this vulnerable population will help guide more informed decisions on the relative risks and benefits for HCT use.


Subject(s)
Hydrocortisone , Infant, Extremely Low Birth Weight , Humans , Infant, Newborn , Infant , Hydrocortisone/therapeutic use , Retrospective Studies , Infant, Premature , Patient Acuity
12.
Pediatr Res ; 93(7): 1943-1954, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34923579

ABSTRACT

BACKGROUND: To determine the association of gestational age (GA) and day of life (DOL) with the circulating serum concentration of six brain injury-associated biomarkers in non-brain injured neonates born between 23 and 41 weeks' GA. METHODS: In a multicenter prospective observational cohort study, serum CNS-insult, inflammatory and trophic proteins concentrations were measured daily in the first 7 DOL. RESULTS: Overall, 3232 serum samples were analyzed from 745 enrollees, median GA 32.3 weeks. BDNF increased 3.7% and IL-8 increased 8.9% each week of gestation. VEGF, IL-6, and IL-10 showed no relationship with GA. VEGF increased 10.8% and IL-8 18.9%, each DOL. IL-6 decreased by 15.8% each DOL. IL-10 decreased by 81.4% each DOL for DOL 0-3. BDNF did not change with DOL. Only 49.67% of samples had detectable GFAP and 33.15% had detectable NRGN. The odds of having detectable GFAP and NRGN increased by 53% and 11%, respectively, each week after 36 weeks' GA. The odds of having detectable GFAP and NRGN decreased by 15% and 8%, respectively, each DOL. CONCLUSIONS: BDNF and IL-8 serum concentrations vary with GA. VEGF and interleukin concentrations are dynamic in the first week of life, suggesting circulating levels should be adjusted for GA and DOL for clinically relevant assessment of brain injury. IMPACT: Normative data of six brain injury-related biomarkers is being proposed. When interpreting serum concentrations of brain injury biomarkers, it is key to adjust for gestational age at birth and day of life during the first week to correctly assess for clinical brain injury in neonates. Variation in levels of some biomarkers may be related to gestational and postnatal age and not necessarily pathology.


Subject(s)
Brain Injuries , Interleukin-10 , Infant, Newborn , Humans , Interleukin-6 , Prospective Studies , Brain-Derived Neurotrophic Factor , Interleukin-8 , Vascular Endothelial Growth Factor A , Gestational Age , Biomarkers , Brain Injuries/diagnosis
13.
J Pediatr ; 252: 146-153.e2, 2023 01.
Article in English | MEDLINE | ID: mdl-35944723

ABSTRACT

OBJECTIVE: The objective of the study was to evaluate the relationship between a panel of candidate plasma biomarkers and (1) death or severe brain injury on magnetic resonance imaging (MRI) and (2) dysfunctional cerebral pressure autoregulation as a measure of evolving encephalopathy. STUDY DESIGN: Neonates with moderate-to-severe hypoxic-ischemic encephalopathy (HIE) at 2 level IV neonatal intensive care units were enrolled into this observational study. Patients were treated with therapeutic hypothermia (TH) and monitored with continuous blood pressure monitoring and near-infrared spectroscopy. Cerebral pressure autoregulation was measured by the hemoglobin volume phase (HVP) index; a higher HVP index indicates poorer autoregulation. Serial blood samples were collected during TH and assayed for Tau, glial fibrillary acidic protein, and neurogranin. MRIs were assessed using National Institutes of Child Health and Human Development scores. The relationships between the candidate biomarkers and (1) death or severe brain injury on MRI (defined as a National Institutes of Child Health and Human Development score of ≥ 2B) and (2) autoregulation were evaluated using bivariate and adjusted logistic regression models. RESULTS: Sixty-two patients were included. Elevated Tau levels on days 2-3 of TH were associated with death or severe injury on MRI (aOR: 1.06, 95% CI: 1.03-1.09; aOR: 1.04, 95% CI: 1.01-1.06, respectively). Higher Tau was also associated with poorer autoregulation (higher HVP index) on the same day (P = .022). CONCLUSIONS: Elevated plasma levels of Tau are associated with death or severe brain injury by MRI and dysfunctional cerebral autoregulation in neonates with HIE. Larger-scale validation of Tau as a biomarker of brain injury in neonates with HIE is warranted.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn , Child , Humans , Hypoxia-Ischemia, Brain/pathology , Magnetic Resonance Imaging/methods , Biomarkers
14.
Front Neurosci ; 16: 931360, 2022.
Article in English | MEDLINE | ID: mdl-35983227

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.

15.
J Perinatol ; 42(10): 1374-1379, 2022 10.
Article in English | MEDLINE | ID: mdl-35780234

ABSTRACT

IMPORTANCE: Intraventricular hemorrhage (IVH) occurs in 15-45% of all very low birth weight (VLBW) preterm infants. Despite improvements in the perinatal care, the incidence of IVH remains high. As more preterm infants survive, there will be a larger burden of neurodevelopmental abnormalities borne by former preterm infants. OBJECTIVE: The objective of this study was to develop a predictive clinical model of IVH risk within the first few hours of life in an effort to augment perinatal counseling and guide the timing of future targeted therapies aimed at preventing or slowing the progression of disease. DESIGN: This is a prospective observational cohort study of VLBW infants born in the NICU at John's Hopkins Children's Center from 2011 to 2019. The presence and severity of IVH was defined on standard head ultrasound screening (HUS) using the modified Papile classification. Clinical variables were identified as significant using absolute risk regression from a general linear model. The model predictors included clinically meaningful variables that were not collinear. SETTING: This study took place at the Johns Hopkins Children's Center Level IV NICU. PARTICIPANTS: The study sample included VLBW infants treated in the neonatal intensive care unit (NICU) at John's Hopkins Children's Center from 2011 to 2019. A total of 683 infants included in the study had no or grade I IVH, and 115 infants had grades II through IV IVH. Exclusion criteria included admission to the JHH NICU after 24 h of age, BW > 1500 g, and failure to consent. MAIN OUTCOME: The main outcome of this study was the presence of grades II-IV IVH on standard head ultrasound screening using the modified Papile classification [1]. RESULTS: A total of 798 VLBW infants were studied in this cohort and 14.4% had moderate to severe IVH. Fifty four percent of the cohort was black, 33% white, and half of the cohort was male. A higher gestational age, 5-min Apgar score, hematocrit, and platelet count were significantly associated with decreased incidence of IVH in a multi-predictor model (ROC 0.826). CONCLUSION AND RELEVANCE: In the face of continued lack of treatments for IVH, prevention is still a primary goal to avoid long-term developmental sequela. This model can be used for perinatal counseling and may provide important information during the narrow therapeutic window for targeted prevention therapies.


Subject(s)
Infant, Premature, Diseases , Infant, Premature , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/etiology , Child , Child, Preschool , Cohort Studies , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature, Diseases/diagnostic imaging , Infant, Premature, Diseases/epidemiology , Infant, Premature, Diseases/etiology , Infant, Very Low Birth Weight , Male , Pregnancy , Retrospective Studies
16.
J Pediatr ; 246: 34-39.e3, 2022 07.
Article in English | MEDLINE | ID: mdl-35460699

ABSTRACT

OBJECTIVE: To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN: Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS: The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS: During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.


Subject(s)
Bronchopulmonary Dysplasia , Respiratory Distress Syndrome, Newborn , Biomarkers/blood , Bronchopulmonary Dysplasia/diagnosis , Cytokines/blood , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Interleukin-10 , Interleukin-6 , Interleukin-8 , Pregnancy , Respiratory Distress Syndrome, Newborn/diagnosis , Vascular Endothelial Growth Factor A/blood
17.
Dev Neurosci ; 44(4-5): 266-276, 2022.
Article in English | MEDLINE | ID: mdl-35358965

ABSTRACT

Cerebral palsy (CP) is the most common cause of physical disability for children worldwide. Many infants and toddlers are not diagnosed with CP until they fail to achieve obvious motor milestones. Currently, there are no effective pharmacologic interventions available for infants and toddlers to substantially improve their trajectory of neurodevelopment. Because children with CP from preterm birth also exhibit a sustained immune system hyper-reactivity, we hypothesized that neuro-immunomodulation with a regimen of repurposed endogenous neurorestorative medications, erythropoietin (EPO) and melatonin (MLT), could improve this trajectory. Thus, we administered EPO + MLT to rats with CP during human infant-toddler equivalency to determine whether we could influence gait patterns in mature animals. After a prenatal injury on embryonic day 18 (E18) that mimics chorioamnionitis at ∼25 weeks human gestation, rat pups were born and raised with their dam. Beginning on postnatal day 15 (P15), equivalent to human infant ∼1 year, rats were randomized to receive either a regimen of EPO + MLT or vehicle (sterile saline) through P20. Gait was assessed in young adult rats at P30 using computerized digital gait analyses including videography on a treadmill. Results indicate that gait metrics of young adult rats treated with an infantile cocktail of EPO + MLT were restored compared to vehicle-treated rats (p < 0.05) and similar to sham controls. These results provide reassuring evidence that pharmacological interventions may be beneficial to infants and toddlers who are diagnosed with CP well after the traditional neonatal window of intervention.


Subject(s)
Brain Injuries , Erythropoietin , Melatonin , Premature Birth , Animals , Brain Injuries/drug therapy , Erythropoietin/pharmacology , Female , Gait , Humans , Infant , Melatonin/pharmacology , Pregnancy , Rats
18.
Dev Neurosci ; 44(4-5): 363-372, 2022.
Article in English | MEDLINE | ID: mdl-35100588

ABSTRACT

Identifying the hemodynamic range that best supports cerebral perfusion using near infrared spectroscopy (NIRS) autoregulation monitoring is a potential physiologic marker for neonatal hypoxic-ischemic encephalopathy (HIE) during therapeutic hypothermia. However, an optimal autoregulation monitoring algorithm has not been identified for neonatal clinical medicine. We tested whether the hemoglobin volume phase (HVP), hemoglobin volume (HVx), and pressure passivity index (PPI) identify changes in autoregulation that are associated with brain injury on MRI or death. The HVP measures the phase difference between a NIRS metric of cerebral blood volume, the total hemoglobin (THb), and mean arterial blood pressure (MAP) at the frequency of maximum coherence. The HVx is the correlation coefficient between MAP and THb. The PPI is the percentage of coherent MAP-DHb (difference between oxygenated and deoxygenated hemoglobin, a marker of cerebral blood flow) epochs in a chosen time period. Neonates cooled for HIE were prospectively enrolled in an observational study in two neonatal intensive care units. In analyses adjusted for study site and encephalopathy level, all indices detected relationships between poor autoregulation in the first 6 h after rewarming with a higher injury score on MRI. Only HVx and PPI during hypothermia and the PPI during rewarming identified autoregulatory dysfunction associated with a poor outcome independent of study site and encephalopathy level. Our findings suggest that the accuracy of mathematical autoregulation algorithms in detecting the risk of brain injury or death may depend on temperature and postnatal age. Extending autoregulation monitoring beyond the standard 72 h of therapeutic hypothermia may serve as a method to provide personalized care by assessing the need for and efficacy of future therapies after the hypothermia treatment phase.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypothermia , Hypoxia-Ischemia, Brain , Brain Injuries/therapy , Cerebrovascular Circulation/physiology , Hemoglobins , Homeostasis/physiology , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn
19.
Pediatr Res ; 92(2): 466-473, 2022 08.
Article in English | MEDLINE | ID: mdl-34621028

ABSTRACT

BACKGROUND: To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS: Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS: Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS: Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT: Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.


Subject(s)
Brain Injuries , Infant, Newborn, Diseases , Arginine , Betaine , Histidine , Humans , Infant , Infant, Newborn , Metabolomics , RNA, Transfer , Sugars , Tandem Mass Spectrometry
20.
J Perinatol ; 42(3): 319-327, 2022 03.
Article in English | MEDLINE | ID: mdl-34531532

ABSTRACT

OBJECTIVE: To determine a safe dose of clonidine (CLON) to be used in infants with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). STUDY DESIGN: A pilot prospective study was performed to determine the effect of CLON on autonomic parameters, the pharmacokinetics (PK) of CLON, and the amount of morphine (MOR) given "as needed" for shivering and agitation in a cohort of infants (n = 12) with HIE undergoing TH compared to a historical control group (n = 28). RESULTS: The CLON group received less "as needed" MOR than the MOR-only group for agitation/shivering (p < 0.001), and the CLON vs. MOR-only group spent 92% vs. 79% of cooling time at the target core body temperature (CBT; p = 0.03, CLON vs. MOR). CONCLUSIONS: Intravenous CLON (1 mcg/kg Q8h) is well tolerated in infants treated with TH for HIE. CLON stabilizes CBT in the ideal range during cooling, which may be optimal for neuroprotection.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn, Diseases , Clonidine/therapeutic use , Humans , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Infant, Newborn, Diseases/therapy , Morphine , Pilot Projects , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...