Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-39040210

ABSTRACT

Increasingly long and complex informed consents have yielded studies demonstrating comparatively low participant comprehension and satisfaction with traditional face-to-face approaches. In parallel, interest in electronic consents for clinical and research genomics has steadily increased, yet limited data are available for trio-based genomic discovery studies. We describe the design, development, implementation, and validation of an electronic iConsent application for trio-based genomic research deployed to support genomic studies of cerebral palsy. iConsent development incorporated stakeholder perspectives including researchers, patient advocates, institutional review board members, and genomic data-sharing considerations. The iConsent platform integrated principles derived from prior electronic consenting research and elements of multimedia learning theory. Participant comprehension was assessed in an interactive teachback format. The iConsent application achieved nine of ten proposed desiderata for effective patient-focused electronic consenting for genomic research. Overall, participants demonstrated high comprehension and retention of key human subjects' considerations. Enrollees reported high levels of satisfaction with the iConsent, and we found that participant comprehension, iConsent clarity, privacy protections, and study goal explanations were associated with overall satisfaction. Although opportunities exist to optimize iConsent, we show that such an approach is feasible, can satisfy multiple stakeholder requirements, and can realize high participant satisfaction and comprehension while increasing study reach.

2.
Am J Hum Genet ; 108(10): 2006-2016, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34626583

ABSTRACT

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Subject(s)
Cerebral Palsy/pathology , Epilepsy/pathology , Genetic Predisposition to Disease , Genetic Variation , Hearing Loss/pathology , Intellectual Disability/pathology , Muscle Spasticity/pathology , ATPases Associated with Diverse Cellular Activities/genetics , Adolescent , Adult , Alleles , Animals , Cerebral Palsy/etiology , Cerebral Palsy/metabolism , Child, Preschool , Epilepsy/etiology , Epilepsy/metabolism , Female , Hearing Loss/etiology , Hearing Loss/metabolism , Humans , Infant , Infant, Newborn , Intellectual Disability/etiology , Intellectual Disability/metabolism , Male , Muscle Spasticity/etiology , Muscle Spasticity/metabolism , Rats , Young Adult
4.
Nat Genet ; 52(10): 1046-1056, 2020 10.
Article in English | MEDLINE | ID: mdl-32989326

ABSTRACT

In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.


Subject(s)
Cerebral Palsy/genetics , F-Box Proteins/genetics , Tubulin/genetics , Tumor Suppressor Proteins/genetics , beta Catenin/genetics , Animals , Cerebral Palsy/pathology , Cyclin D/genetics , Cytoskeleton/genetics , Drosophila/genetics , Exome/genetics , Extracellular Matrix/genetics , Female , Focal Adhesions/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Humans , Male , Mutation/genetics , Neurites/metabolism , Neurites/pathology , Risk Factors , Sequence Analysis, DNA , Signal Transduction/genetics , Exome Sequencing , rhoB GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL