Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 120(6): 2199-2218, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33963899

ABSTRACT

Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 µM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 µM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 µM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.


Subject(s)
Amides/pharmacology , Leishmania braziliensis/drug effects , Piperidones/pharmacology , Trypanocidal Agents/pharmacology , Amides/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , Computer Simulation , Humans , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Piperidones/chemistry , Vero Cells
2.
Int Immunopharmacol ; 47: 227-230, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28433944

ABSTRACT

American tegumentary leishmaniasis (ATL) is considered a neglected disease, for which an effective vaccine or an efficient diagnosis is not yet available and whose chemotherapeutic arsenal is threatened by the emergence of resistance by etiological agents such as Leishmania amazonensis. ATL is endemic in poor countries and has a high incidence in Brazil. Vaccines developed from native parasite fractions have led to the identification of defined antigenic subunits and the development of vaccine adjuvant technology. The purpose of the present study was to develop and compare preparations based on membrane antigens from L. amazonensis, as a biotechnological prototype for the immunoprophylaxis of the disease in a murine experimental model. For this purpose, batches of biodegradable polymeric micro/nanoparticles were produced, characterized and compared with other parasite's antigens in solution. All preparations containing membrane antigens presented low toxicity on murine macrophages. The in vivo evaluation of immunization efficacy was performed against a challenge with L. amazonensis, along with an evaluation of the immune response profile generated in BALB/C mice. The animals were followed for sample processing and quantification of serum-specific cytokines, nitrites and antibodies. The sera of animals immunized with the non-encapsulated antigen formulations showed higher intensities of nitrites and total IgGs. This approach evidenced the importance of the biological studies involving the immune response of the host against the parasite being interconnected and related to the subfractionation of its proteins in the search for more effective vaccine candidates.


Subject(s)
Antigens, Protozoan/immunology , Leishmania/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis/immunology , Macrophages/immunology , Membrane Proteins/immunology , Animals , Antibodies, Protozoan/blood , Cells, Cultured , Cytokines/blood , Humans , Male , Mice , Mice, Inbred BALB C , Models, Animal , Nanoparticles , Nitric Oxide/metabolism
3.
Neuropediatrics ; 23(3): 131-7, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1353617

ABSTRACT

Transient hypercapnic hyperoxemia was induced in two Rett syndrome children by the administration of a gaseous mixture of 80% O2 and 20% CO2. Time course studies of neurotransmitters and their metabolites showed an immediate and marked increase in central biogenic amine turnover following inhalation of the gas mixture. The increased turnover of biogenic amines was associated with improved clinical changes. This suggests a coupled relationship and provides further support for an etiological role of neurotransmitter dysfunction in Rett syndrome. In a complementary study, elevation of pulmonary CO2 by application of a simple rebreathing device resulted in improvement of abnormal blood gases and elimination of the Cheyne-Stokes-like respiratory pattern of the Rett syndrome. Near normalization of the EEG occurred when a normal respiratory pattern was imposed by means of a respirator. Taken together, these results lead to the preliminary conclusion that cerebral hypoxemia secondary to abnormal respiratory function may contribute to diminished production of biogenic amines in Rett syndrome.


Subject(s)
Carbon Dioxide/blood , Hypoxia, Brain/physiopathology , Neurotransmitter Agents/physiology , Oxygen/blood , Rett Syndrome/physiopathology , Brain/physiopathology , Child , Dopamine/physiology , Female , Humans , Neurologic Examination , Norepinephrine/physiology , Stereotyped Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...