Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37343180

ABSTRACT

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Subject(s)
Cytostatic Agents , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacokinetics , Cytostatic Agents/therapeutic use , Blood-Brain Barrier
2.
J Med Chem ; 63(17): 9523-9539, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32663005

ABSTRACT

Visceral leishmaniasis (VL) is a parasitic infection that results in approximately 26 000-65 000 deaths annually. The available treatments are hampered by issues such as toxicity, variable efficacy, and unsuitable dosing options. The need for new treatments is urgent and led to a collaboration between the Drugs for Neglected Diseases initiative (DNDi), GlaxoSmithKline (GSK), and the University of Dundee. An 8-hydroxynaphthyridine was identified as a start point, and an early compound demonstrated weak efficacy in a mouse model of VL but was hampered by glucuronidation. Efforts to address this led to the development of compounds with improved in vitro profiles, but these were poorly tolerated in vivo. Investigation of the mode of action (MoA) demonstrated that activity was driven by sequestration of divalent metal cations, a mechanism which was likely to drive the poor tolerability. This highlights the importance of investigating MoA and pharmacokinetics at an early stage for phenotypically active series.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Drug Design , Leishmania/drug effects , Naphthyridines/chemistry , Naphthyridines/pharmacology , Animals , Inhibitory Concentration 50 , Mice , Solubility , Structure-Activity Relationship , Water/chemistry
3.
RSC Med Chem ; 11(10): 1168-1177, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33479621

ABSTRACT

Visceral leishmaniasis (VL) affects millions of people across the world, largely in developing nations. It is fatal if left untreated and the current treatments are inadequate. As such, there is an urgent need for new, improved medicines. In this paper, we describe the identification of a 6-amino-N-(piperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidine scaffold and its optimization to give compounds which showed efficacy when orally dosed in a mouse model of VL.

4.
ChemMedChem ; 14(14): 1329-1335, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31188540

ABSTRACT

Herein we describe the optimization of a phenotypic hit against Plasmodium falciparum based on an aminoacetamide scaffold. This led to N-(3-chloro-4-fluorophenyl)-2-methyl-2-{[4-methyl-3-(morpholinosulfonyl)phenyl]amino}propanamide (compound 28) with low-nanomolar activity against the intraerythrocytic stages of the malaria parasite, and which was found to be inactive in a mammalian cell counter-screen up to 25 µm. Inhibition of gametes in the dual gamete activation assay suggests that this family of compounds may also have transmission blocking capabilities. Whilst we were unable to optimize the aqueous solubility and microsomal stability to a point at which the aminoacetamides would be suitable for in vivo pharmacokinetic and efficacy studies, compound 28 displayed excellent antimalarial potency and selectivity; it could therefore serve as a suitable chemical tool for drug target identification.


Subject(s)
Acetamides/pharmacology , Antimalarials/pharmacology , Acetamides/chemical synthesis , Acetamides/pharmacokinetics , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium cynomolgi/drug effects , Plasmodium falciparum/drug effects , Structure-Activity Relationship
5.
J Med Chem ; 62(3): 1180-1202, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30570265

ABSTRACT

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.


Subject(s)
Leishmaniasis, Visceral/drug therapy , Morpholines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Trypanocidal Agents/therapeutic use , Animals , Female , Hep G2 Cells , Humans , Leishmania donovani/drug effects , Male , Mice, Inbred BALB C , Molecular Structure , Morpholines/chemical synthesis , Morpholines/toxicity , Parasitic Sensitivity Tests , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/toxicity , Pyrazoles/chemical synthesis , Pyrazoles/toxicity , Pyrimidines/chemical synthesis , Pyrimidines/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity
6.
J Med Chem ; 61(18): 8374-8389, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30207721

ABSTRACT

Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.


Subject(s)
Acyltransferases/antagonists & inhibitors , Blood-Brain Barrier/drug effects , Drug Design , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Cell Survival , Female , Humans , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Conformation , Structure-Activity Relationship , Trypanosomiasis, African/microbiology
7.
Biochem J ; 475(16): 2593-2610, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30045874

ABSTRACT

Trypanosomatid parasites are the infectious agents causing Chagas disease, visceral and cutaneous leishmaniasis and human African trypanosomiasis. Recent work of others has implicated an aldo-keto reductase (AKR) in the susceptibility and resistance of Trypanosoma cruzi to benznidazole, a drug used to treat Chagas disease. Here, we show that TcAKR and homologues in the related parasites Trypanosoma brucei and Leishmania donovani do not reductively activate monocyclic (benznidazole, nifurtimox and fexinidazole) or bicyclic nitro-drugs such as PA-824. Rather, these enzymes metabolise a variety of toxic ketoaldehydes, such as glyoxal and methylglyoxal, suggesting a role in cellular defence against chemical stress. UPLC-QToF/MS analysis of benznidazole bioactivation by T. cruzi cell lysates confirms previous reports identifying numerous drug metabolites, including a dihydro-dihydroxy intermediate that can dissociate to form N-benzyl-2-guanidinoacetamide and glyoxal, a toxic DNA-glycating and cross-linking agent. Thus, we propose that TcAKR contributes to benznidazole resistance by the removal of toxic glyoxal. In addition, three of the four enzymes studied here display activity as prostaglandin F2α synthases, despite the fact that there are no credible cyclooxygenases in these parasites to account for formation of the precursor PGH2 from arachidonic acid. Our studies suggest that arachidonic acid is first converted non-enzymatically in parasite lysates to (PGH2-like) regioisomers by free radical-mediated peroxidation and that AKRs convert these lipid peroxides into isoprostanes, including prostaglandin F2α and 8-iso-prostaglandin F2α.


Subject(s)
Aldo-Keto Reductases/metabolism , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Isoprostanes/metabolism , Leishmania donovani/metabolism , Protozoan Proteins/metabolism , Pyruvaldehyde/metabolism , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/metabolism , Aldo-Keto Reductases/genetics , Dinoprost/genetics , Isoprostanes/genetics , Leishmania donovani/genetics , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma cruzi/genetics
8.
Article in English | MEDLINE | ID: mdl-29844044

ABSTRACT

The lack of information regarding the mechanisms of action (MoA) or specific molecular targets of phenotypically active compounds can prove a barrier to their development as chemotherapeutic agents. Here, we report the results of our orthogonal genetic, molecular, and biochemical studies to determine the MoA of a novel 7-substituted 8-hydroxy-1,6-naphthyridine (8-HNT) series that displays promising activity against Trypanosoma brucei and Leishmania donovani High-throughput loss-of-function genetic screens in T. brucei highlighted two probable zinc transporters associated with resistance to these compounds. These transporters localized to the parasite Golgi apparatus. Directed by these findings, the role of zinc and other divalent cations in the MoA of these compounds was investigated. 8-HNT compounds were found to directly deplete intracellular levels of Zn2+, while the addition of exogenous Zn2+ and Fe2+ reduced the potency of compounds from this series. Detailed biochemical analyses confirmed that 8-HNT compounds bind directly to a number of divalent cations, predominantly Zn2+, Fe2+, and Cu2+, forming 2:1 complexes with one of these cations. Collectively, our studies demonstrate transition metal depletion, due to chelation, as the MoA of the 8-HNT series of compounds. Strategies to improve the selectivity of 8-HNT compounds are discussed.


Subject(s)
Antiprotozoal Agents/pharmacology , Cation Transport Proteins/genetics , Chelating Agents/pharmacology , Naphthyridines/pharmacology , Protozoan Proteins/genetics , Zinc/metabolism , Antiprotozoal Agents/chemical synthesis , Cation Transport Proteins/metabolism , Cations, Divalent , Chelating Agents/chemical synthesis , Copper/metabolism , Gene Expression , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Iron/metabolism , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Mutation , Naphthyridines/chemical synthesis , Parasitic Sensitivity Tests , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism
9.
J Med Chem ; 60(23): 9790-9806, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29125744

ABSTRACT

N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.


Subject(s)
Acyltransferases/antagonists & inhibitors , Aminopyridines/chemistry , Aminopyridines/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/drug therapy , Acyltransferases/metabolism , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Animals , Brain/metabolism , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Mice , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics , Trypanosomiasis, African/metabolism
10.
Cell ; 170(2): 249-259.e25, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28669536

ABSTRACT

Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is ∼100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. PAPERCLIP.


Subject(s)
Antitubercular Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Drug Resistance, Bacterial , Mycobacterium tuberculosis/drug effects , Piperidines/pharmacology , Tuberculosis/microbiology , Animals , Antitubercular Agents/chemistry , Benzofurans/chemistry , Benzofurans/pharmacokinetics , Cell Line , Female , Mice , Mice, Inbred BALB C , Models, Molecular , Piperidines/chemistry , Piperidines/pharmacokinetics , Specific Pathogen-Free Organisms
11.
PLoS Pathog ; 12(11): e1005971, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27812217

ABSTRACT

Drug discovery pipelines for the "neglected diseases" are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series.


Subject(s)
Leishmaniasis, Visceral/parasitology , Nitroreductases/metabolism , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Animals , Disease Models, Animal , Fluorescent Antibody Technique , Gene Knockdown Techniques , Mass Spectrometry , Neglected Diseases/parasitology , Oligonucleotide Array Sequence Analysis , Parasitic Sensitivity Tests , Polymerase Chain Reaction
12.
J Med Chem ; 59(21): 9672-9685, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27631715

ABSTRACT

The antiplasmodial activity, DMPK properties, and efficacy of a series of quinoline-4-carboxamides are described. This series was identified from a phenotypic screen against the blood stage of Plasmodium falciparum (3D7) and displayed moderate potency but with suboptimal physicochemical properties and poor microsomal stability. The screening hit (1, EC50 = 120 nM) was optimized to lead molecules with low nanomolar in vitro potency. Improvement of the pharmacokinetic profile led to several compounds showing excellent oral efficacy in the P. berghei malaria mouse model with ED90 values below 1 mg/kg when dosed orally for 4 days. The favorable potency, selectivity, DMPK properties, and efficacy coupled with a novel mechanism of action, inhibition of translation elongation factor 2 (PfEF2), led to progression of 2 (DDD107498) to preclinical development.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Malaria/drug therapy , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Disease Models, Animal , Mice , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
14.
J Med Chem ; 59(13): 6101-20, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27314305

ABSTRACT

In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting.


Subject(s)
Antimalarials/chemistry , Antimalarials/therapeutic use , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Humans , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice, SCID , Parasitemia/drug therapy , Parasitemia/parasitology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology
15.
Elife ; 52016 05 24.
Article in English | MEDLINE | ID: mdl-27215734

ABSTRACT

There is an urgent requirement for safe, oral and cost-effective drugs for the treatment of visceral leishmaniasis (VL). We report that delamanid (OPC-67683), an approved drug for multi-drug resistant tuberculosis, is a potent inhibitor of Leishmania donovani both in vitro and in vivo. Twice-daily oral dosing of delamanid at 30 mg kg(-1) for 5 days resulted in sterile cures in a mouse model of VL. Treatment with lower doses revealed a U-shaped (hormetic) dose-response curve with greater parasite suppression at 1 mg kg(-1) than at 3 mg kg(-1) (5 or 10 day dosing). Dosing delamanid for 10 days confirmed the hormetic dose-response and improved the efficacy at all doses investigated. Mechanistic studies reveal that delamanid is rapidly metabolised by parasites via an enzyme, distinct from the nitroreductase that activates fexinidazole. Delamanid has the potential to be repurposed as a much-needed oral therapy for VL.


Subject(s)
Antiprotozoal Agents/pharmacology , Antitubercular Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Nitroimidazoles/pharmacology , Oxazoles/pharmacology , Administration, Oral , Animals , Antiprotozoal Agents/blood , Antiprotozoal Agents/pharmacokinetics , Antitubercular Agents/blood , Antitubercular Agents/pharmacokinetics , Biotransformation , Disease Models, Animal , Drug Administration Schedule , Drug Dosage Calculations , Drug Repositioning , Female , Hormesis , Leishmania donovani/growth & development , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Mice , Mice, Inbred BALB C , Nitroimidazoles/blood , Nitroimidazoles/pharmacokinetics , Oxazoles/blood , Oxazoles/pharmacokinetics , Parasitic Sensitivity Tests , Treatment Outcome
16.
J Med Chem ; 58(19): 7695-706, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26418485

ABSTRACT

There is an urgent need for new, brain penetrant small molecules that target the central nervous system second stage of human African trypanosomiasis (HAT). We report that a series of novel indoline-2-carboxamides have been identified as inhibitors of Trypanosoma brucei from screening of a focused protease library against Trypanosoma brucei brucei in culture. We describe the optimization and characterization of this series. Potent antiproliferative activity was observed. The series demonstrated excellent pharmacokinetic properties, full cures in a stage 1 mouse model of HAT, and a partial cure in a stage 2 mouse model of HAT. Lack of tolerability prevented delivery of a fully curative regimen in the stage 2 mouse model and thus further progress of this series.


Subject(s)
Brain/drug effects , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Chemistry Techniques, Synthetic , Disease Models, Animal , Drug Discovery , Drug Evaluation, Preclinical/methods , Female , Indoles/chemistry , Mice, Inbred Strains , Stereoisomerism , Structure-Activity Relationship , Trypanocidal Agents/pharmacokinetics , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/parasitology
17.
ChemMedChem ; 10(11): 1809-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26381210

ABSTRACT

A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 µm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Small Molecule Libraries/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Phenotype , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/growth & development
18.
ChemMedChem ; 10(11): 1821-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26395087

ABSTRACT

The enzyme N-myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high-throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen. An X-ray crystal structure of the thiazolidinone hit in Leishmania major NMT showed the compound bound in the previously reported active site, utilising a novel binding mode. This provides potential for further optimisation. The benzomorpholinone was also found to bind in a similar region. Using an X-ray crystallography/structure-based design approach, the benzomorpholinone series was further optimised, increasing activity against T. brucei NMT by >1000-fold. A series of trypanocidal compounds were identified with suitable in vitro DMPK properties, including CNS exposure for further development. Further work is required to increase selectivity over the human NMT isoform and activity against T. brucei.


Subject(s)
Acyltransferases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Trypanosoma brucei brucei/enzymology , Acyltransferases/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects
19.
Nature ; 522(7556): 315-20, 2015 06 18.
Article in English | MEDLINE | ID: mdl-26085270

ABSTRACT

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Subject(s)
Antimalarials/pharmacology , Gene Expression Regulation/drug effects , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/metabolism , Protein Biosynthesis/drug effects , Quinolines/pharmacology , Animals , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Drug Discovery , Female , Life Cycle Stages/drug effects , Liver/drug effects , Liver/parasitology , Malaria/drug therapy , Male , Models, Molecular , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Plasmodium/genetics , Plasmodium/growth & development , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium vivax/drug effects , Plasmodium vivax/metabolism , Quinolines/administration & dosage , Quinolines/chemistry , Quinolines/pharmacokinetics
20.
J Med Chem ; 57(23): 9855-69, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25412409

ABSTRACT

Trypanosoma brucei N-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis (HAT). From previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although this compound represents an excellent lead, poor central nervous system (CNS) exposure restricts its use to the hemolymphatic form (stage 1) of the disease. With a clear clinical need for new drug treatments for HAT that address both the hemolymphatic and CNS stages of the disease, a chemistry campaign was initiated to address the shortfalls of this series. This paper describes modifications to the pyrazole sulfonamides which markedly improved blood-brain barrier permeability, achieved by reducing polar surface area and capping the sulfonamide. Moreover, replacing the core aromatic with a flexible linker significantly improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS) mouse model of HAT.


Subject(s)
Acyltransferases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Sulfonamides/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosomiasis, African/drug therapy , Aminopyridines/chemistry , Animals , Blood-Brain Barrier/drug effects , Central Nervous System/drug effects , Female , Humans , Inhibitory Concentration 50 , Mice , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...