Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 80(8): 959-968, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28485485

ABSTRACT

Plant anatomy was examined for two clarinet reeds made out of Arundo donax by different means of microscopy: light microscopy, low-energy secondary electron scanning electron microscopy (SEM), backscattered electron SEM, and helium ion microscopy (HiM). The local indentation hardness HIT and Young's modulus EIT of different tissues on their cross sections were measured. A vascular bundle (Vb) (HIT = 60-100 MPa, EIT = 1,500-2,000 MPa) that includes soft tissues of phloem and xylem and a vascular bundle sheath (Bs) (HIT = 300-500 MPa, EIT = ∼7,000 MPa) form a pipe of the strong string along the longitudinal direction of the cane. This Vb/Bs string is connected transversally with a net of thin cell-walls of parenchyma cells (Pa) (HIT = 70-200 MPa, EIT = 2,000-3,000 MPa) that also range along the longitudinal direction of the cane. It was turned out that the acoustic quality of a reed is mainly ascribed to the shape and configuration of Vb and the size of Pa. A reed where Vb bundles with continuous Bs rings are homogeneously distributed with higher proportion among a softer network of small Pa cells enables musical performance.

2.
Microsc Microanal ; 22(3): 673-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27070831

ABSTRACT

AlN/SiO x nanocomposite coatings fabricated by differential pumping cosputtering (DPCS) were investigated by analytical electron microscopy. The DPCS system consists of two halves of a Chamber, A and B, for radio frequency (RF) magnetron sputtering deposition of different materials, and a substrate holder that rotates through the chambers. Al and SiO2 were sputtered in gas environments with a flow mixture of N2 and Ar gases at RF power of 200 W in the Al Chamber A and a flow of Ar gas at RF powers of 49 W in the SiO2 Chamber B. The substrates of (001) Si wafers heated at 250°C were rotated for 1,080 min at 3 rpm and alternately deposited by AlN and SiO2. AlN columnar crystals grew at a rate of ~0.3 nm/revolution preferentially along the hexagonal [0001] axis. Amorphous silicon oxide (a-SiO x ), deposited at a rate of ~0.2 nm/revolution, was coagulated preferentially along the boundaries between the AlN columns and also the interfaces between the subgrains within the AlN columns. The a-SiO x played an important role in the increase in mechanical hardness of the AlN/SiO x composite coating by disturbing deformation of AlN crystal lattices.

3.
Microsc Res Tech ; 78(4): 260-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25626987

ABSTRACT

Hichiriki is a traditional Japanese double-reed wind instrument used in Japanese ancient imperial court music, gagaku, which has been performed since the 7th century. The best reeds for hichiriki have been made of culms or stems of Phragmites australis (P. australis) that are harvested from only a limited reed bed at Udono near Kyoto. The aim of this study is to elucidate why the stems from Udono are the best materials for hichiriki reeds. Plant anatomy was examined for choice stems of P. australis grown in different reed beds in Japan as well as morphology, and the local indentation hardness and Young's modulus of tissues on the cross-sections of some representatives of hichiriki reeds were measured. It is concluded that the good stems for hichiriki reeds have an outer diameter of about 11 mm, a wall thickness of about 1 mm and comparatively homogeneous structure where harder materials, such as epidermis, hypodermis, sclerenchymatous cells, and vascular bundle sheaths with hard walls, are orderly deployed with softer materials such as parenchyma cells and vascular bundles. This structure has smaller differences of hardness and Young's modulus between the hard and soft materials in the reed, providing the best music performance.


Subject(s)
Plant Stems/anatomy & histology , Poaceae/anatomy & histology , Biometry , Japan , Microscopy
4.
ACS Appl Mater Interfaces ; 5(9): 3833-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23582015

ABSTRACT

Analytical electron microscopy revealed the structure and growth of hard coating Cr(Al)N/SiOx nanocomposite films prepared in a differential pumping cosputtering (DPCS) system, which has two chambers to sputter different materials and a rotating substrate holder. The substrate holder was heated at 250 °C and rotated at a speed as low as 1 rpm. In order to promote the adhesion between the substrate and composite film, transition layers were deposited on a (001) Si substrate by sputtering from the CrAl target with an Ar flow and a mixture flow of Ar and N2 (Ar/N2) gases, subsequently, prior to the composite film deposition. Then, the Cr(Al)N/SiOx nanocomposite film was fabricated on the transition layers by cosputtering from the CrAl target with the Ar/N2 gas flow and from the SiO2 target with the Ar gas flow. The film had a multilayer structure of ∼1.6 nm thick crystallite layers of Cr(Al)N similar to NaCl-type CrN and ∼1 nm thick amorphous silicon oxide layers. The structure of the transition layers was also elucidated. These results can help with the fabrication of new hard nanocomposite films by DPCS.

SELECTION OF CITATIONS
SEARCH DETAIL
...